RicardoSantos

MLLossFunctions

Library "MLLossFunctions"
Methods for Loss functions.

mse(expects, predicts) Mean Squared Error ( MSE ) " MSE = 1/N * sum((y - y')^2) ".
  Parameters:
    expects: float array, expected values.
    predicts: float array, prediction values.
  Returns: float

binary_cross_entropy(expects, predicts) Binary Cross-Entropy Loss (log).
  Parameters:
    expects: float array, expected values.
    predicts: float array, prediction values.
  Returns: float

مكتبة باين

كمثال للقيم التي تتبناها TradingView، نشر المؤلف شيفرة باين كمكتبة مفتوحة المصدر بحيث يمكن لمبرمجي باين الآخرين من مجتمعنا استخدامه بحرية. تحياتنا للمؤلف! يمكنك استخدام هذه المكتبة بشكل خاص أو في منشورات أخرى مفتوحة المصدر، ولكن إعادة استخدام هذا الرمز في المنشور تحكمه قواعد الموقع.

إخلاء المسؤولية

لا يُقصد بالمعلومات والمنشورات أن تكون، أو تشكل، أي نصيحة مالية أو استثمارية أو تجارية أو أنواع أخرى من النصائح أو التوصيات المقدمة أو المعتمدة من TradingView. اقرأ المزيد في شروط الاستخدام.

هل تريد استخدام هذه المكتبة؟

انسخ النص إلى الحافظة وألصقه في النص البرمجي الخاص بك.