Note
This page contains advanced material. If you are a beginning Pine Script™ programmer, we recommend that you become familiar with other, more accessible Pine Script™ features before you venture here.
Pine Script™ methods are specialized functions associated with specific instances of built-in or user-defined types. They are essentially the same as regular functions in most regards but offer a shorter, more convenient syntax. Users can access methods using dot notation on variables directly, just like accessing the fields of a Pine Script™ object.
Pine Script™ includes built-in methods for array, matrix, line, linefill, label, box, and table types. These methods provide users with a more concise way to call specialized routines for these types within their scripts.
When using these special types, the expressions
<namespace>.<functionName>([paramName =] <objectName>, …)
and
<objectName>.<functionName>(…)
are equivalent. For example, rather than using
array.get(id, index)
to get the value from an array id
at the specified index
, we can simply use
id.get(index)
to achieve the same effect.
This notation eliminates the need for users to reference the function’s namespace, as
get() is a method of id
in this context.
Written below is a practical example to demonstrate the usage of built-in methods in place of functions.
The following script computes Bollinger Bands over a specified number of prices sampled once every n
bars.
It calls array.push() and
array.shift() to queue sourceInput
values through the sourceArray
,
then array.avg() and
array.stdev() to compute the sampleMean
and sampleDev
.
The script then uses these values to calculate the highBand
and lowBand
, which it plots on the chart along with the sampleMean
:
//@version=5
indicator("Custom Sample BB", overlay = true)
float sourceInput = input.source(close, "Source")
int samplesInput = input.int(20, "Samples")
int n = input.int(10, "Bars")
float multiplier = input.float(2.0, "StdDev")
var array<float> sourceArray = array.new<float>(samplesInput)
var float sampleMean = na
var float sampleDev = na
// Identify if `n` bars have passed.
if bar_index % n == 0
// Update the queue.
array.push(sourceArray, sourceInput)
array.shift(sourceArray)
// Update the mean and standard deviaiton values.
sampleMean := array.avg(sourceArray)
sampleDev := array.stdev(sourceArray) * multiplier
// Calculate bands.
float highBand = sampleMean + sampleDev
float lowBand = sampleMean - sampleDev
plot(sampleMean, "Basis", color.orange)
plot(highBand, "Upper", color.lime)
plot(lowBand, "Lower", color.red)
Let’s rewrite this code to utilize methods rather than built-in functions. In this version, we have replaced all built-in array.* functions in the script with equivalent methods:
//@version=5
indicator("Custom Sample BB", overlay = true)
float sourceInput = input.source(close, "Source")
int samplesInput = input.int(20, "Samples")
int n = input.int(10, "Bars")
float multiplier = input.float(2.0, "StdDev")
var array<float> sourceArray = array.new<float>(samplesInput)
var float sampleMean = na
var float sampleDev = na
// Identify if `n` bars have passed.
if bar_index % n == 0
// Update the queue.
sourceArray.push(sourceInput)
sourceArray.shift()
// Update the mean and standard deviaiton values.
sampleMean := sourceArray.avg()
sampleDev := sourceArray.stdev() * multiplier
// Calculate band values.
float highBand = sampleMean + sampleDev
float lowBand = sampleMean - sampleDev
plot(sampleMean, "Basis", color.orange)
plot(highBand, "Upper", color.lime)
plot(lowBand, "Lower", color.red)
sourceArray.*
rather than referencing the array namespace.sourceArray
as a parameter when we call the methods since they already reference the object.Pine Script™ allows users to define custom methods for use with objects of any built-in or user-defined type. Defining a method is essentially the same as defining a function, but with two key differences:
[export] method <functionName>(<paramType> <paramName> [= <defaultValue>], …) =>
<functionBlock>
Let’s apply user-defined methods to our previous Bollinger Bands example to encapsulate operations from the global scope, which will simplify the code and promote reusability. See this portion from the example:
// Identify if `n` bars have passed.
if bar_index % n == 0
// Update the queue.
sourceArray.push(sourceInput)
sourceArray.shift()
// Update the mean and standard deviaiton values.
sampleMean := sourceArray.avg()
sampleDev := sourceArray.stdev() * multiplier
// Calculate band values.
float highBand = sampleMean + sampleDev
float lowBand = sampleMean - sampleDev
We will start by defining a simple method to queue values through an array in a single call.
This maintainQueue()
method invokes the push() and
shift() methods on a srcArray
when takeSample
is true and returns
the object:
// @function Maintains a queue of the size of `srcArray`.
// It appends a `value` to the array and removes its oldest element at position zero.
// @param srcArray (array<float>) The array where the queue is maintained.
// @param value (float) The new value to be added to the queue.
// The queue's oldest value is also removed, so its size is constant.
// @param takeSample (bool) A new `value` is only pushed into the queue if this is true.
// @returns (array<float>) `srcArray` object.
method maintainQueue(array<float> srcArray, float value, bool takeSample = true) =>
if takeSample
srcArray.push(value)
srcArray.shift()
srcArray
@function
compiler annotation to document method descriptions.Now we can replace sourceArray.push()
and sourceArray.shift()
with sourceArray.maintainQueue()
in our example:
// Identify if `n` bars have passed.
if bar_index % n == 0
// Update the queue.
sourceArray.maintainQueue(sourceInput)
// Update the mean and standard deviaiton values.
sampleMean := sourceArray.avg()
sampleDev := sourceArray.stdev() * multiplier
// Calculate band values.
float highBand = sampleMean + sampleDev
float lowBand = sampleMean - sampleDev
From here, we will further simplify our code by defining a method that handles all Bollinger Band calculations within its scope.
This calcBB()
method invokes the avg() and
stdev() methods on a srcArray
to update mean
and dev
values
when calculate
is true.
The method uses these values to return a tuple containing the basis, upper band, and lower band values respectively:
// @function Computes Bollinger Band values from an array of data.
// @param srcArray (array<float>) The array where the queue is maintained.
// @param multiplier (float) Standard deviaiton multiplier.
// @param calcuate (bool) The method will only calculate new values when this is true.
// @returns A tuple containing the basis, upper band, and lower band respectively.
method calcBB(array<float> srcArray, float mult, bool calculate = true) =>
var float mean = na
var float dev = na
if calculate
// Compute the mean and standard deviation of the array.
mean := srcArray.avg()
dev := srcArray.stdev() * mult
[mean, mean + dev, mean - dev]
With this method, we can now remove Bollinger Band calculations from the global scope and improve code readability:
// Identify if `n` bars have passed.
bool newSample = bar_index % n == 0
// Update the queue and compute new BB values on each new sample.
[sampleMean, highBand, lowBand] = sourceArray.maintainQueue(sourceInput, newSample).calcBB(multiplier, newSample)
if
block in the global scope, we have defined a newSample
variable that is only true once every n
bars. The maintainQueue()
and calcBB()
methods use this value for their respective takeSample
and calculate
parameters.maintainQueue()
method returns the object that it references, we’re able to call calcBB()
from the same line of code, as both methods apply to array<float>
instances.Here is how the full script example looks now that we’ve applied our user-defined methods:
//@version=5
indicator("Custom Sample BB", overlay = true)
float sourceInput = input.source(close, "Source")
int samplesInput = input.int(20, "Samples")
int n = input.int(10, "Bars")
float multiplier = input.float(2.0, "StdDev")
var array<float> sourceArray = array.new<float>(samplesInput)
// @function Maintains a queue of the size of `srcArray`.
// It appends a `value` to the array and removes its oldest element at position zero.
// @param srcArray (array<float>) The array where the queue is maintained.
// @param value (float) The new value to be added to the queue.
// The queue's oldest value is also removed, so its size is constant.
// @param takeSample (bool) A new `value` is only pushed into the queue if this is true.
// @returns (array<float>) `srcArray` object.
method maintainQueue(array<float> srcArray, float value, bool takeSample = true) =>
if takeSample
srcArray.push(value)
srcArray.shift()
srcArray
// @function Computes Bollinger Band values from an array of data.
// @param srcArray (array<float>) The array where the queue is maintained.
// @param multiplier (float) Standard deviaiton multiplier.
// @param calcuate (bool) The method will only calculate new values when this is true.
// @returns A tuple containing the basis, upper band, and lower band respectively.
method calcBB(array<float> srcArray, float mult, bool calculate = true) =>
var float mean = na
var float dev = na
if calculate
// Compute the mean and standard deviation of the array.
mean := srcArray.avg()
dev := srcArray.stdev() * mult
[mean, mean + dev, mean - dev]
// Identify if `n` bars have passed.
bool newSample = bar_index % n == 0
// Update the queue and compute new BB values on each new sample.
[sampleMean, highBand, lowBand] = sourceArray.maintainQueue(sourceInput, newSample).calcBB(multiplier, newSample)
plot(sampleMean, "Basis", color.orange)
plot(highBand, "Upper", color.lime)
plot(lowBand, "Lower", color.red)
User-defined methods can override and overload existing built-in and user-defined methods with the same identifier. This capability allows users to define multiple routines associated with different parameter signatures under the same method name.
As a simple example, suppose we want to define a method to identify a variable’s type. Since we must explicitly specify the type of object associated with a user-defined method, we will need to define overloads for each type that we want it to recognize.
Below, we have defined a getType()
method that returns a string representation of a variable’s type with overloads for the five primitive types:
// @function Identifies an object's type.
// @param this Object to inspect.
// @returns (string) A string representation of the type.
method getType(int this) =>
na(this) ? "int(na)" : "int"
method getType(float this) =>
na(this) ? "float(na)" : "float"
method getType(bool this) =>
na(this) ? "bool(na)" : "bool"
method getType(color this) =>
na(this) ? "color(na)" : "color"
method getType(string this) =>
na(this) ? "string(na)" : "string"
Now we can use these overloads to inspect some variables.
This script uses str.format()
to format the results from calling the getType()
method on five different variables into a single results
string,
then displays the string in the lbl
label using the built-in
set_text() method:
//@version=5
indicator("Type Inspection")
// @function Identifies an object's type.
// @param this Object to inspect.
// @returns (string) A string representation of the type.
method getType(int this) =>
na(this) ? "int(na)" : "int"
method getType(float this) =>
na(this) ? "float(na)" : "float"
method getType(bool this) =>
na(this) ? "bool(na)" : "bool"
method getType(color this) =>
na(this) ? "color(na)" : "color"
method getType(string this) =>
na(this) ? "string(na)" : "string"
a = 1
b = 1.0
c = true
d = color.white
e = "1"
// Inspect variables and format results.
results = str.format(
"a: {0}\nb: {1}\nc: {2}\nd: {3}\ne: {4}",
a.getType(), b.getType(), c.getType(), d.getType(), e.getType()
)
var label lbl = label.new(0, 0)
lbl.set_x(bar_index)
lbl.set_text(results)
getType()
the compiler will use.na
to demarcate that it is empty.Let’s apply what we’ve learned to construct a script that estimates the cumulative distribution of elements in an array, meaning the fraction of elements in the array that are less than or equal to any given value.
There are many ways in which we could choose to tackle this objective. For this example, we will start by defining a method to replace elements of an array, which will help us count the occurrences of elements within a range of values.
Written below is an overload of the built-in fill()
method for array<float>
instances. This overload replaces elements in a srcArray
within the range between the
lowerBound
and upperBound
with an innerValue
, and replaces all elements outside the range with an outerValue
:
// @function Replaces elements in a `srcArray` between `lowerBound` and `upperBound` with an `innerValue`,
// and replaces elements outside the range with an `outerValue`.
// @param srcArray (array<float>) Array to modify.
// @param innerValue (float) Value to replace elements within the range with.
// @param outerValue (float) Value to replace elements outside the range with.
// @param lowerBound (float) Lowest value to replace with `innerValue`.
// @param upperBound (float) Highest value to replace with `innerValue`.
// @returns (array<float>) `srcArray` object.
method fill(array<float> srcArray, float innerValue, float outerValue, float lowerBound, float upperBound) =>
for [i, element] in srcArray
if (element >= lowerBound or na(lowerBound)) and (element <= upperBound or na(upperBound))
srcArray.set(i, innerValue)
else
srcArray.set(i, outerValue)
srcArray
With this method, we can filter an array by value ranges to produce an array of occurrences. For example, the expression
srcArray.copy().fill(1.0, 0.0, min, val)
copies the srcArray
object, replaces all elements between min
and val
with 1.0, then replaces all elements above val
with 0.0.
From here, it’s easy to estimate the output of the cumulative distribution function at the val
, as it’s simply the average of the resulting array:
srcArray.copy().fill(1.0, 0.0, min, val).avg()
fill()
overload instead of the built-in when the user provides innerValue
, outerValue
, lowerBound
, and upperBound
arguments in the call.lowerBound
or upperBound
is na
, its value is ignored while filtering the fill range.copy()
, fill()
, and avg()
successively on the same line of code because the first two methods return an array<float>
instance.We can now use this to define a method that will calculate our empirical distribution values.
The following eCDF()
method estimates a number of evenly spaced ascending steps
from
the cumulative distribution function of a srcArray
and pushes the results into a cdfArray
:
// @function Estimates the empirical CDF of a `srcArray`.
// @param srcArray (array<float>) Array to calculate on.
// @param steps (int) Number of steps in the estimation.
// @returns (array<float>) Array of estimated CDF ratios.
method eCDF(array<float> srcArray, int steps) =>
float min = srcArray.min()
float rng = srcArray.range() / steps
array<float> cdfArray = array.new<float>()
// Add averages of `srcArray` filtered by value region to the `cdfArray`.
float val = min
for i = 1 to steps
val += rng
cdfArray.push(srcArray.copy().fill(1.0, 0.0, min, val).avg())
cdfArray
Lastly, to ensure that our eCDF()
method functions properly for arrays containing small and large values,
we will define a method to normalize our arrays.
This featureScale()
method uses array min()
and range() methods to produce a rescaled copy of a srcArray
.
We will use this to normalize our arrays prior to invoking the eCDF()
method:
// @function Rescales the elements within a `srcArray` to the interval [0, 1].
// @param srcArray (array<float>) Array to normalize.
// @returns (array<float>) Normalized copy of the `srcArray`.
method featureScale(array<float> srcArray) =>
float min = srcArray.min()
float rng = srcArray.range()
array<float> scaledArray = array.new<float>()
// Push normalized `element` values into the `scaledArray`.
for element in srcArray
scaledArray.push((element - min) / rng)
scaledArray
rng
is 0, the value of the array element will be na
.The full example below queues a sourceArray
of size length
with sourceInput
values using our previous maintainQueue()
method,
normalizes the array’s elements using the featureScale()
method, then calls the eCDF()
method to get an array of estimates for
n
evenly spaced steps on the distribution. The script then calls a user-defined makeLabel()
function to display the estimates and prices
in a label on the right side of the chart:
//@version=5
indicator("Empirical Distribution", overlay = true)
float sourceInput = input.source(close, "Source")
int length = input.int(20, "Length")
int n = input.int(20, "Steps")
// @function Maintains a queue of the size of `srcArray`.
// It appends a `value` to the array and removes its oldest element at position zero.
// @param srcArray (array<float>) The array where the queue is maintained.
// @param value (float) The new value to be added to the queue.
// The queue's oldest value is also removed, so its size is constant.
// @param takeSample (bool) A new `value` is only pushed into the queue if this is true.
// @returns (array<float>) `srcArray` object.
method maintainQueue(array<float> srcArray, float value, bool takeSample = true) =>
if takeSample
srcArray.push(value)
srcArray.shift()
srcArray
// @function Replaces elements in a `srcArray` between `lowerBound` and `upperBound` with an `innerValue`,
// and replaces elements outside the range with an `outerValue`.
// @param srcArray (array<float>) Array to modify.
// @param innerValue (float) Value to replace elements within the range with.
// @param outerValue (float) Value to replace elements outside the range with.
// @param lowerBound (float) Lowest value to replace with `innerValue`.
// @param upperBound (float) Highest value to replace with `innerValue`.
// @returns (array<float>) `srcArray` object.
method fill(array<float> srcArray, float innerValue, float outerValue, float lowerBound, float upperBound) =>
for [i, element] in srcArray
if (element >= lowerBound or na(lowerBound)) and (element <= upperBound or na(upperBound))
srcArray.set(i, innerValue)
else
srcArray.set(i, outerValue)
srcArray
// @function Estimates the empirical CDF of a `srcArray`.
// @param srcArray (array<float>) Array to calculate on.
// @param steps (int) Number of steps in the estimation.
// @returns (array<float>) Array of estimated CDF ratios.
method eCDF(array<float> srcArray, int steps) =>
float min = srcArray.min()
float rng = srcArray.range() / steps
array<float> cdfArray = array.new<float>()
// Add averages of `srcArray` filtered by value region to the `cdfArray`.
float val = min
for i = 1 to steps
val += rng
cdfArray.push(srcArray.copy().fill(1.0, 0.0, min, val).avg())
cdfArray
// @function Rescales the elements within a `srcArray` to the interval [0, 1].
// @param srcArray (array<float>) Array to normalize.
// @returns (array<float>) Normalized copy of the `srcArray`.
method featureScale(array<float> srcArray) =>
float min = srcArray.min()
float rng = srcArray.range()
array<float> scaledArray = array.new<float>()
// Push normalized `element` values into the `scaledArray`.
for element in srcArray
scaledArray.push((element - min) / rng)
scaledArray
// @function Draws a label containing eCDF estimates in the format "{price}: {percent}%"
// @param srcArray (array<float>) Array of source values.
// @param cdfArray (array<float>) Array of CDF estimates.
// @returns (void)
makeLabel(array<float> srcArray, array<float> cdfArray) =>
float max = srcArray.max()
float rng = srcArray.range() / cdfArray.size()
string results = ""
var label lbl = label.new(0, 0, "", style = label.style_label_left, text_font_family = font.family_monospace)
// Add percentage strings to `results` starting from the `max`.
cdfArray.reverse()
for [i, element] in cdfArray
results += str.format("{0}: {1}%\n", max - i * rng, element * 100)
// Update `lbl` attributes.
lbl.set_xy(bar_index + 1, srcArray.avg())
lbl.set_text(results)
var array<float> sourceArray = array.new<float>(length)
// Add background color for the last `length` bars.
bgcolor(bar_index > last_bar_index - length ? color.new(color.orange, 80) : na)
// Queue `sourceArray`, feature scale, then estimate the distribution over `n` steps.
array<float> distArray = sourceArray.maintainQueue(sourceInput).featureScale().eCDF(n)
// Draw label.
makeLabel(sourceArray, distArray)