t-SNE出现比较晚,是2008年由Laurens van der Maatens和Geoffrey Hinton开发的,它能更高地将N维数据映射到1~3D,于此同时比较号地维持原始数据地相似性。t-SNE的基本工作原理是随机选择一个数据点(标点)并计算与数据集合中其它点的欧几里德距离并创建概率分布。标点附近的点具有更高的相似度,反之相似度低。然后根据相似度给数据集合中每个点都创建一个相似度矩阵。t-SNE根据正态分布计算出相似距离并转换为联合概率,这样可以将所有数据点随机排列在低维度上。接着,t-SNE有一次对高维数据点和随机排列的低维数据进行相同的计算,根据t分布分配概率。因为t分布可以减少拥挤问题,所以其分类效果要好于PCA。
Avoid losing contact!Don't miss out! The first and most important thing to do is to join my Discord chat now! Click here to start your adventure: discord.com/invite/ZTGpQJq 防止失联,请立即行动,加入本猫聊天群: discord.com/invite/ZTGpQJq
يعمل أيضًا:
إخلاء المسؤولية
لا يُقصد بالمعلومات والمنشورات أن تكون، أو تشكل، أي نصيحة مالية أو استثمارية أو تجارية أو أنواع أخرى من النصائح أو التوصيات المقدمة أو المعتمدة من TradingView. اقرأ المزيد في شروط الاستخدام.