import pandas as pd import numpy as np import matplotlib.pyplot as plt import ta
def load_data(): data = pd.read_csv('historical_data.csv') data['Date'] = pd.to_datetime(data['Date']) data.set_index('Date', inplace=True) return data
def calculate_rsi(data, period=14): data['RSI'] = ta.momentum.RSIIndicator(data['Close'], window=period).rsi() return data
def detect_positive_divergence(data): detected_patterns = [] for i in range(1, len(data) - 1): if (data['Close'] < data['Close'][i-1] and data['RSI'] > data['RSI'][i-1]): detected_patterns.append((data.index, 'Positive Divergence')) return detected_patterns
for i in range(2, len(data) - 2): for pattern, ratios in fib_ratios.items(): high1 = data['High'][i-2] high2 = data['High'] low1 = data['Low'][i-2] low2 = data['Low']
لا يُقصد بالمعلومات والمنشورات أن تكون، أو تشكل، أي نصيحة مالية أو استثمارية أو تجارية أو أنواع أخرى من النصائح أو التوصيات المقدمة أو المعتمدة من TradingView. اقرأ المزيد في شروط الاستخدام.