PINE LIBRARY

FunctionSMCMC

تم تحديثه
Library "FunctionSMCMC"
Methods to implement Markov Chain Monte Carlo Simulation (MCMC)

markov_chain(weights, actions, target_path, position, last_value) a basic implementation of the markov chain algorithm
  Parameters:
    weights: float array, weights of the Markov Chain.
    actions: float array, actions of the Markov Chain.
    target_path: float array, target path array.
    position: int, index of the path.
    last_value: float, base value to increment.
  Returns: void, updates target array

mcmc(weights, actions, start_value, n_iterations) uses a monte carlo algorithm to simulate a markov chain at each step.
  Parameters:
    weights: float array, weights of the Markov Chain.
    actions: float array, actions of the Markov Chain.
    start_value: float, base value to start simulation.
    n_iterations: integer, number of iterations to run.
  Returns: float array with path.
ملاحظات الأخبار
v2
outsourced the probability distribution sample selection to a external library:
-
FunctionProbabilityDistributionSampling

arraysdecisionmarkovmarkovchainMATHMCMONTECARLOpathprobabilityrandom

مكتبة باين

كمثال للقيم التي تتبناها TradingView، نشر المؤلف شيفرة باين كمكتبة مفتوحة المصدر بحيث يمكن لمبرمجي باين الآخرين من مجتمعنا استخدامه بحرية. تحياتنا للمؤلف! يمكنك استخدام هذه المكتبة بشكل خاص أو في منشورات أخرى مفتوحة المصدر، ولكن إعادة استخدام هذا الرمز في المنشور تحكمه قوانين الموقع.

إخلاء المسؤولية