LO1_News2023H1Library "LO1_News2023H1" - Contains the news events for 2023
f_loadNewsRows()
f_loadExcSevByTypeId()
f_loadExcTagByTypeId()
f_loadExcDelayAfterNewsMins()
المؤشرات والاستراتيجيات
AssetCorrelationUtils
- Open source Library Used for Indicators that utilize correlation between assets for divergence calculations. It has no drawing elements.
ASSET CORRELATION UTILS
PineScript library for automatic detection of correlated asset pairs and triads for multi-asset analysis.
WHAT IT DOES
This library automatically identifies correlated assets based on the current chart symbol. It returns properly configured asset pairings for use in SMT divergence detection, inter-market analysis, and multi-asset comparison tools.
HOW IT WORKS
The library matches your chart symbol against known correlation groups:
Index Futures: NQ/ES/YM/RTY triads (including micros)
Metals: Gold/Silver/Copper triads (futures and CFD)
Forex: EUR/GBP/DXY and USD/JPY/CHF triads
Energy: Crude/Gasoline/Heating Oil triads
Treasury: ZB/ZF/ZN bond triads
Crypto: BTC/ETH/TOTAL3 and major altcoin pairings
Inversion flags are automatically computed for assets that move inversely (e.g., DXY vs EUR pairs).
HOW TO USE
import fstarcapital/AssetCorrelationUtils/1 as acu
// Simple: auto-detect from current chart
config = acu.resolveCurrentChart()
// Access resolved assets
primary = config.primary
secondary = config.secondary
tertiary = config.tertiary
EXPORTED FUNCTIONS
resolveCurrentChart(): One-call auto-detection using chart syminfo
resolveAssets(): Full detection with custom parameters
resolveTriad() / resolveDyad(): Manual resolution with inversion logic
detect*() functions: Category-specific detectors for custom workflows
TYPES
AssetPairing: Core structure for primary/secondary/tertiary tickers with inversion flags
AssetConfig: Full resolution result with detection status and asset category
DISCLAIMER
This library is a utility for building multi-asset indicators. Asset correlations are not guaranteed and may change over time. Always validate pairings for your specific trading context.
Full Default Function @type and @field descriptions below.
Library "AssetCorrelationUtils"
detectIndicesFutures(ticker)
Detects Index Futures (NQ/ES/YM/RTY + micro variants)
Parameters:
ticker (string) : The ticker string to check (typically syminfo.ticker)
Returns: AssetPairing with secondary and tertiary assets configured
detectMetalsFutures(ticker)
Detects Metal Futures (GC/SI/HG + micro variants)
Parameters:
ticker (string) : The ticker string to check
Returns: AssetPairing with secondary and tertiary assets configured
detectForexFutures(ticker)
Detects Forex Futures (6E/6B + micro variants)
Parameters:
ticker (string) : The ticker string to check
Returns: AssetPairing with secondary and tertiary assets configured
detectEnergyFutures(ticker)
Detects Energy Futures (CL/RB/HO + micro variants)
Parameters:
ticker (string) : The ticker string to check
Returns: AssetPairing with secondary and tertiary assets configured
detectTreasuryFutures(ticker)
Detects Treasury Futures (ZB/ZF/ZN)
Parameters:
ticker (string) : The ticker string to check
Returns: AssetPairing with secondary and tertiary assets configured
detectCryptoFutures(ticker)
Detects CME Crypto Futures (BTC/ETH + micro variants)
Parameters:
ticker (string) : The ticker string to check
Returns: AssetPairing with secondary and tertiary assets configured
detectCADFutures(ticker)
Detects CAD Forex Futures (6C + micro variants)
Parameters:
ticker (string) : The ticker string to check
Returns: AssetPairing with secondary and tertiary assets configured
detectForexCFD(ticker, tickerId)
Detects Forex CFD pairs (EUR/GBP/DXY, USD/JPY/CHF triads)
Parameters:
ticker (string) : The ticker string to check
tickerId (string) : The full ticker ID (syminfo.tickerid) for primary asset
Returns: AssetPairing with secondary and tertiary assets configured
detectCrypto(ticker, tickerId)
Detects major Crypto assets (BTC, ETH, SOL, XRP, alts)
Parameters:
ticker (string) : The ticker string to check
tickerId (string) : The full ticker ID for primary asset
Returns: AssetPairing with secondary and tertiary assets configured
detectMetalsCFD(ticker, tickerId)
Detects Metals CFD (XAU/XAG/Copper)
Parameters:
ticker (string) : The ticker string to check
tickerId (string) : The full ticker ID for primary asset
Returns: AssetPairing with secondary and tertiary assets configured
detectIndicesCFD(ticker, tickerId)
Detects Indices CFD (NAS100/SP500/DJ30)
Parameters:
ticker (string) : The ticker string to check
tickerId (string) : The full ticker ID for primary asset
Returns: AssetPairing with secondary and tertiary assets configured
detectEUStocks(ticker, tickerId)
Detects EU Stock Indices (GER40/EU50) - Dyad only
Parameters:
ticker (string) : The ticker string to check
tickerId (string) : The full ticker ID for primary asset
Returns: AssetPairing with secondary asset configured (tertiary empty for dyad)
getDefaultFallback(tickerId)
Returns default fallback assets (chart ticker only, no correlation)
Parameters:
tickerId (string) : The full ticker ID for primary asset
Returns: AssetPairing with chart ticker as primary, empty secondary/tertiary (no correlation)
applySessionModifierWithBackadjust(tickerStr, sessionType)
Applies futures session modifier to ticker WITH back adjustment
Parameters:
tickerStr (string) : The ticker to modify
sessionType (string) : The session type (syminfo.session)
Returns: Modified ticker string with session and backadjustment.on applied
applySessionModifierNoBackadjust(tickerStr, sessionType)
Applies futures session modifier to ticker WITHOUT back adjustment
Parameters:
tickerStr (string) : The ticker to modify
sessionType (string) : The session type (syminfo.session)
Returns: Modified ticker string with session and backadjustment.off applied
isTriadMode(pairing)
Checks if a pairing represents a valid triad (3 assets)
Parameters:
pairing (AssetPairing) : The AssetPairing to check
Returns: True if tertiary is non-empty (triad mode), false for dyad
getAssetTicker(tickerId)
Extracts clean ticker string from full ticker ID
Parameters:
tickerId (string) : The full ticker ID (e.g., "BITGET:BTCUSDT.P")
Returns: Clean ticker string (e.g., "BTCUSDT.P")
resolveTriad(chartTickerId, pairing)
Resolves triad asset assignments with proper inversion flags
Parameters:
chartTickerId (string) : The current chart's ticker ID (syminfo.tickerid)
pairing (AssetPairing) : The detected AssetPairing
Returns: Tuple
resolveDyad(chartTickerId, pairing)
Resolves dyad asset assignment with proper inversion flag
Parameters:
chartTickerId (string) : The current chart's ticker ID
pairing (AssetPairing) : The detected AssetPairing (dyad: tertiary is empty)
Returns: Tuple
resolveAssets(ticker, tickerId, assetType, sessionType, useBackadjust)
Main auto-detection entry point. Detects asset category and returns fully resolved config.
Parameters:
ticker (string) : The ticker string to check (typically syminfo.ticker)
tickerId (string) : The full ticker ID (typically syminfo.tickerid)
assetType (string) : The asset type (typically syminfo.type)
sessionType (string) : The session type for futures (typically syminfo.session)
useBackadjust (bool) : Whether to apply back adjustment for futures session alignment
Returns: AssetConfig with fully resolved assets, inversion flags, and detection status
resolveCurrentChart()
Simplified auto-detection using current chart's syminfo values
Returns: AssetConfig with fully resolved assets, inversion flags, and detection status
AssetPairing
Core asset pairing structure for triad/dyad configurations
Fields:
primary (series string) : The primary (chart) asset ticker ID
secondary (series string) : The secondary correlated asset ticker ID
tertiary (series string) : The tertiary correlated asset ticker ID (empty for dyad)
invertSecondary (series bool) : Whether secondary asset should be inverted for divergence calc
invertTertiary (series bool) : Whether tertiary asset should be inverted for divergence calc
AssetConfig
Full asset resolution result with mode detection and computed values
Fields:
detected (series bool) : Whether auto-detection succeeded
isTriadMode (series bool) : True if triad (3 assets), false if dyad (2 assets)
primary (series string) : The resolved primary asset ticker ID
secondary (series string) : The resolved secondary asset ticker ID
tertiary (series string) : The resolved tertiary asset ticker ID (empty for dyad)
invertSecondary (series bool) : Computed inversion flag for secondary asset
invertTertiary (series bool) : Computed inversion flag for tertiary asset
assetCategory (series string) : String describing the detected asset category
LiveTracker by N&MLiveTracker is a real-time trade execution and accounting engine built on top of statistically validated backtest states.
It mirrors live trading conditions with precise fee modeling, partial take-profits, trailing stops, and liquidation logic.
Each trade is tracked with both mark-to-market PnL and “net if closed now” metrics for full transparency.
Designed as a modular Pine Script® library, it enables reliable, state-driven live execution without repainting.
historicalEngine by N&M🇬🇧 English Introduction
historicalEngine is a Pine Script library designed for advanced state-based backtesting.
It does not test a single strategy, but evaluates full market configurations (trend, structure, momentum, multi-TF context).
Each trade is linked to a unique state hash, revealing which conditions truly perform over time.
The engine computes professional metrics: PnL, win rate, expectancy, Sharpe, drawdown, reliability.
It includes dynamic TP/SL, liquidation logic, early exits, realistic fees and slippage.
Built to be modular, extensible, and efficient, it plugs into any indicator.
Goal: turn historical data into a statistical trading edge.
V1 – a solid foundation for adaptive and data-driven trading systems.
tradeEngineLibrary "tradeEngine"
calculateLiquidationPrice(entryPrice, isLong, leverage, buffer)
Parameters:
entryPrice (float)
isLong (bool)
leverage (int)
buffer (float)
calculateTPLevels(entryPrice, atr, isLong, risk)
Parameters:
entryPrice (float)
atr (float)
isLong (bool)
risk (RiskConfig)
calculateSL(entryLow, entryHigh, isLong, risk)
Parameters:
entryLow (float)
entryHigh (float)
isLong (bool)
risk (RiskConfig)
simulateTrade(highs, lows, closes, entryIdx, entryPrice, entryLow, entryHigh, entryATR, isLong, risk, maxBars)
Parameters:
highs (array)
lows (array)
closes (array)
entryIdx (int)
entryPrice (float)
entryLow (float)
entryHigh (float)
entryATR (float)
isLong (bool)
risk (RiskConfig)
maxBars (int)
createRiskConfig(leverage, liqBuffer, useTP1, tp1ATR, useTP2, tp2ATR, useSL, slBuffer, maker, taker, slip)
Parameters:
leverage (int)
liqBuffer (float)
useTP1 (bool)
tp1ATR (float)
useTP2 (bool)
tp2ATR (float)
useSL (bool)
slBuffer (float)
maker (float)
taker (float)
slip (float)
TradeResult
Fields:
exitType (series string)
exitBarIdx (series int)
exitPrice (series float)
finalPnL (series float)
maxPnL (series float)
tp1Hit (series bool)
tp2Hit (series bool)
slHit (series bool)
liquidated (series bool)
barsInTrade (series int)
tp1Level (series float)
tp2Level (series float)
slLevel (series float)
liqLevel (series float)
RiskConfig
Fields:
leverage (series int)
liquidationBuffer (series float)
useTP1 (series bool)
tp1ATR (series float)
useTP2 (series bool)
tp2ATR (series float)
useFixedSL (series bool)
slBuffer (series float)
makerFee (series float)
takerFee (series float)
slippage (series float)
matrixCoreLibrary "matrixCore"
analyzeCandleStructure(o, h, l, c, atr, smallBodyThreshold, longWickRatio)
Parameters:
o (float)
h (float)
l (float)
c (float)
atr (float)
smallBodyThreshold (float)
longWickRatio (float)
isRedRejectionCandle(o, l, c, redRejectionWickMin)
Parameters:
o (float)
l (float)
c (float)
redRejectionWickMin (float)
isEqual(a, b, tol)
Parameters:
a (float)
b (float)
tol (float)
detectPattern(kf, km, ks, tol)
Parameters:
kf (float)
km (float)
ks (float)
tol (float)
calculateStateHash(kp, ep, pp, comp, cType, slope, tfH, tfL, redRej)
Parameters:
kp (int)
ep (int)
pp (int)
comp (int)
cType (int)
slope (int)
tfH (bool)
tfL (bool)
redRej (bool)
createStateConfig(kp, ep, pp, comp, cType, slope, tfH, tfL, redRej, hash)
Parameters:
kp (int)
ep (int)
pp (int)
comp (int)
cType (int)
slope (int)
tfH (bool)
tfL (bool)
redRej (bool)
hash (int)
createBarSnapshot(barIdx, o, h, l, c, atr, ema, stateHash, kp, ep, pp, comp, cType, slope, tfH, tfL, redRej)
Parameters:
barIdx (int)
o (float)
h (float)
l (float)
c (float)
atr (float)
ema (float)
stateHash (int)
kp (int)
ep (int)
pp (int)
comp (int)
cType (int)
slope (int)
tfH (bool)
tfL (bool)
redRej (bool)
stateToString(cfg)
Parameters:
cfg (StateConfig)
getTablePosition(pos)
Parameters:
pos (string)
getGradientColor(value, minVal, maxVal)
Parameters:
value (float)
minVal (float)
maxVal (float)
StateConfig
Fields:
kijunPattern (series int)
emaPattern (series int)
pricePos (series int)
compression (series int)
candleType (series int)
emaSlope (series int)
tfHigherBullish (series bool)
tfLowerBullish (series bool)
redRejection (series bool)
hash (series int)
BarSnapshot
Fields:
barIndex (series int)
openPrice (series float)
highPrice (series float)
lowPrice (series float)
closePrice (series float)
atr (series float)
emaFast (series float)
stateHash (series int)
kijunPattern (series int)
emaPattern (series int)
pricePos (series int)
compression (series int)
candleType (series int)
emaSlope (series int)
tfHigherBullish (series bool)
tfLowerBullish (series bool)
redRejection (series bool)
labConfigCoreLibrary "labConfigCore"
Configuration centrale pour tous les indicateurs LAB (Kijun + EMA + S/R)
Centralise les valeurs par défaut pour éviter les désynchronisations entre indicateurs
getTFFast()
Retourne le timeframe Fast par défaut
Returns: String - Timeframe Fast ("15" par défaut)
getTFMid()
Retourne le timeframe Mid par défaut
Returns: String - Timeframe Mid ("60" par défaut)
getTFSlow()
Retourne le timeframe Slow par défaut
Returns: String - Timeframe Slow ("240" par défaut)
getTFATR()
Retourne le timeframe ATR par défaut
Returns: String - Timeframe ATR ("60" par défaut)
getKijunLength()
Retourne la longueur Kijun par défaut
Returns: Int - Longueur Kijun (26 par défaut)
getShowKijun()
Retourne l'état d'affichage Kijun par défaut
Returns: Bool - Afficher Kijun (true par défaut)
getEMALength()
Retourne la longueur EMA par défaut
Returns: Int - Longueur EMA (50 par défaut)
getChannelWidth()
Retourne la largeur des canaux EMA par défaut
Returns: Float - Largeur canal en % (2.0 par défaut)
getChannelAlpha()
Retourne la transparence des canaux par défaut
Returns: Int - Alpha channel (93 par défaut)
getShowChannelFast()
Retourne l'état d'affichage canal Fast par défaut
Returns: Bool - Afficher canal Fast (false par défaut)
getShowChannelMid()
Retourne l'état d'affichage canal Mid par défaut
Returns: Bool - Afficher canal Mid (true par défaut)
getShowChannelSlow()
Retourne l'état d'affichage canal Slow par défaut
Returns: Bool - Afficher canal Slow (true par défaut)
getChannelColorFast()
Retourne la couleur canal Fast par défaut
Returns: Color - Couleur Fast (#00BCD4 par défaut)
getChannelColorMid()
Retourne la couleur canal Mid par défaut
Returns: Color - Couleur Mid (#4CAF50 par défaut)
getChannelColorSlow()
Retourne la couleur canal Slow par défaut
Returns: Color - Couleur Slow (#FF9800 par défaut)
getSRDisplayMode()
Retourne le mode d'affichage S/R par défaut
Returns: String - Mode ('S/R Zones' par défaut)
getSRTimeframe()
Retourne le timeframe S/R par défaut
Returns: String - Timeframe S/R ('Chart' par défaut)
getSRVolMA()
Retourne la longueur Volume MA par défaut
Returns: Int - Longueur Vol MA (6 par défaut)
getSRNumZones()
Retourne le nombre de zones back par défaut
Returns: Int - Zones back (10 par défaut)
getSRExtendLines()
Retourne l'état extend lines par défaut
Returns: Bool - Extend to next zone (true par défaut)
getSRExtendActive()
Retourne l'état extend active par défaut
Returns: Bool - Extend active right (true par défaut)
getSRExtendRight()
Retourne l'état extend right par défaut
Returns: Bool - Extend right (false par défaut)
getSRShowLabels()
Retourne l'état affichage labels par défaut
Returns: Bool - Show labels (true par défaut)
getSRLabelLocation()
Retourne la position labels par défaut
Returns: String - Position ('Right' par défaut)
getSRLabelOffset()
Retourne l'offset labels par défaut
Returns: Int - Offset (15 par défaut)
getSRShowHL()
Retourne l'état affichage H/L par défaut
Returns: Bool - Show H/L lines (true par défaut)
getSRShowOC()
Retourne l'état affichage O/C par défaut
Returns: Bool - Show O/C lines (true par défaut)
getSRLineStyleHL()
Retourne le style ligne H/L par défaut
Returns: String - Style ('Solid' par défaut)
getSRLineWidthHL()
Retourne l'épaisseur ligne H/L par défaut
Returns: Int - Width (1 par défaut)
getSRLineStyleOC()
Retourne le style ligne O/C par défaut
Returns: String - Style ('Solid' par défaut)
getSRLineWidthOC()
Retourne l'épaisseur ligne O/C par défaut
Returns: Int - Width (1 par défaut)
getSRResLinesColor()
Retourne la couleur lignes résistance par défaut
Returns: Color - Couleur (rouge 20% transparent)
getSRResZoneColor()
Retourne la couleur zone résistance par défaut
Returns: Color - Couleur (rouge 90% transparent)
getSRSupLinesColor()
Retourne la couleur lignes support par défaut
Returns: Color - Couleur (lime 20% transparent)
getSRSupZoneColor()
Retourne la couleur zone support par défaut
Returns: Color - Couleur (lime 90% transparent)
getNormMode()
Retourne le mode de normalisation par défaut
Returns: String - Mode ('ATR' par défaut)
getATRLength()
Retourne la longueur ATR par défaut
Returns: Int - Longueur ATR (14 par défaut)
getTolEqual()
Retourne la tolérance égalité par défaut
Returns: Float - Tolérance (0.10 par défaut)
getThresholdTight()
Retourne le seuil compression par défaut
Returns: Float - Seuil tight (0.25 par défaut)
getThresholdWide()
Retourne le seuil extension par défaut
Returns: Float - Seuil wide (1.50 par défaut)
getShowDashboard()
Retourne l'état d'affichage dashboard par défaut
Returns: Bool - Show table (true par défaut)
getDashboardPosition()
Retourne la position dashboard par défaut
Returns: String - Position ('Top Right' par défaut)
getDashboardSize()
Retourne la taille dashboard par défaut
Returns: String - Size ('Small' par défaut)
getProbBarsForward()
Retourne le nombre de barres forward par défaut
Returns: Int - Bars forward (20 par défaut)
getProbWinThreshold()
Retourne le seuil win par défaut
Returns: Float - Win threshold % (1.5 par défaut)
getProbLossThreshold()
Retourne le seuil loss par défaut
Returns: Float - Loss threshold % (1.0 par défaut)
getProbHistorySize()
Retourne la taille historique par défaut
Returns: Int - History size (500 par défaut)
getStrategyTPSLMode()
Retourne le mode TP/SL par défaut
Returns: String - Mode ('% Fixed' ou 'ATR Multiple')
getStrategyTPPercent()
Retourne le take profit % par défaut
Returns: Float - TP % (2.0 par défaut)
getStrategySLPercent()
Retourne le stop loss % par défaut
Returns: Float - SL % (1.0 par défaut)
getStrategyTPATRMultiple()
Retourne le multiple ATR pour TP par défaut
Returns: Float - TP ATR multiple (2.0 par défaut)
getStrategySLATRMultiple()
Retourne le multiple ATR pour SL par défaut
Returns: Float - SL ATR multiple (1.5 par défaut)
getStrategyUseTrailing()
Retourne l'état trailing stop par défaut
Returns: Bool - Use trailing stop (false par défaut)
getStrategyTrailingActivation()
Retourne l'activation trailing % par défaut
Returns: Float - Trailing activation % (1.0 par défaut)
getStrategyTrailingOffset()
Retourne le trailing offset % par défaut
Returns: Float - Trailing offset % (0.5 par défaut)
getStrategyPositionSize()
Retourne la taille position par défaut
Returns: Float - Position size % equity (100 par défaut)
getStrategyInitialCapital()
Retourne le capital initial par défaut
Returns: Float - Initial capital (10000 par défaut)
getStrategyCommission()
Retourne la commission par défaut
Returns: Float - Commission % (0.1 par défaut)
getStrategySlippage()
Retourne le slippage par défaut
Returns: Int - Slippage ticks (2 par défaut)
getAllKijunDefaults()
Retourne TOUS les paramètres Kijun sous forme de tuple
Returns: - TF Fast, Mid, Slow, Length, Show
getAllEMADefaults()
Retourne TOUS les paramètres EMA sous forme de tuple
Returns: - Length, Width, Alpha, Show Fast, Mid, Slow
getAllNormDefaults()
Retourne TOUS les paramètres Normalisation sous forme de tuple
Returns: - Mode, TF ATR, Length, Tol, Tight, Wide
getAllDashboardDefaults()
Retourne TOUS les paramètres Dashboard sous forme de tuple
Returns: - Show, Position, Size
volSRCoreLibrary volSRCore
Library to compute volume-based support and resistance zones using fractal logic.
tfStringToFormat(tfInput)
Converts a timeframe string into Pine Script format.
Parameters:
tfInput (string): Timeframe string ("Chart", "1m", "5m", "1h", "D", etc.)
Returns:
string — Pine Script–formatted timeframe
resInMinutes()
Converts the current chart timeframe into minutes.
Returns:
float — number of minutes of the current timeframe
fractalUp(tfHigh, tfVol, tfVolMA)
Detects a bullish fractal (potential resistance).
Parameters:
tfHigh (float): High series of the timeframe
tfVol (float): Volume series of the timeframe
tfVolMA (float): Volume moving average series
Returns:
bool — true if a bullish fractal is detected
fractalDown(tfLow, tfVol, tfVolMA)
Detects a bearish fractal (potential support).
Parameters:
tfLow (float): Low series of the timeframe
tfVol (float): Volume series of the timeframe
tfVolMA (float): Volume moving average series
Returns:
bool — true if a bearish fractal is detected
calcFractalUpLevel(tfHigh, tfVol, tfVolMA)
Computes the resistance level from a bullish fractal.
Parameters:
tfHigh (float): High series
tfVol (float): Volume series
tfVolMA (float): Volume MA series
Returns:
float — resistance level
calcFractalDownLevel(tfLow, tfVol, tfVolMA)
Computes the support level from a bearish fractal.
Parameters:
tfLow (float): Low series
tfVol (float): Volume series
tfVolMA (float): Volume MA series
Returns:
float — support level
calcResistanceZone(tfHigh, tfOpen, tfClose, tfVol, tfVolMA)
Computes the resistance zone (between High and Open/Close).
Parameters:
tfHigh (float): High series
tfOpen (float): Open series
tfClose (float): Close series
tfVol (float): Volume series
tfVolMA (float): Volume MA series
Returns:
float — lower boundary of the resistance zone
calcSupportZone(tfLow, tfOpen, tfClose, tfVol, tfVolMA)
Computes the support zone (between Low and Open/Close).
Parameters:
tfLow (float): Low series
tfOpen (float): Open series
tfClose (float): Close series
tfVol (float): Volume series
tfVolMA (float): Volume MA series
Returns:
float — upper boundary of the support zone
tfNewBar(tfRes)
Detects a new bar on a given timeframe.
Parameters:
tfRes (simple string): Timeframe string
Returns:
bool — true if a new bar is detected
tfBarIndexBack(tfRes, barsBack)
Computes the bar_index N bars back on a target timeframe.
Parameters:
tfRes (simple string): Timeframe string
barsBack (simple int): Number of bars back (1, 3, 5, etc.)
Returns:
int — bar_index at that point in time
tfBarsRange(tfRes, startBar, endBar)
Computes the number of chart bars between two bars of a target timeframe.
Parameters:
tfRes (simple string): Timeframe string
startBar (simple int): Start bar (e.g., 1)
endBar (simple int): End bar (e.g., 5)
Returns:
int — number of chart bars in that range
calcPivotHighBarIndex(startBarsBack, rangeSize, maxBarsBack)
Finds the exact bar_index of the highest high within a given range.
Parameters:
startBarsBack (simple int): Start of the scan (bars back)
rangeSize (simple int): Size of the scan range
maxBarsBack (simple int): max_bars_back limit (e.g., 4999)
Returns:
int — bar_index of the highest high, or maxBarsBack if out of bounds
calcPivotLowBarIndex(startBarsBack, rangeSize, maxBarsBack)
Finds the exact bar_index of the lowest low within a given range.
Parameters:
startBarsBack (simple int): Start of the scan (bars back)
rangeSize (simple int): Size of the scan range
maxBarsBack (simple int): max_bars_back limit (e.g., 4999)
Returns:
int — bar_index of the lowest low, or maxBarsBack if out of bounds
detectPriceInteraction(resLevel, resZone, supLevel, supZone)
Detects price interactions with support/resistance zones.
Parameters:
resLevel (float): Resistance level
resZone (float): Resistance zone
supLevel (float): Support level
supZone (float): Support zone
Returns:
EntersResZone
TestsResAsSupport
EntersSupZone
TestsSupAsResistance
BreaksResistance
BreaksSupport
calcSRLevelsFromData(tfOpen, tfHigh, tfLow, tfClose, tfVol, volMaLength)
Computes all support/resistance levels from already-fetched MTF data.
Parameters:
tfOpen (float): TF open
tfHigh (float): TF high
tfLow (float): TF low
tfClose (float): TF close
tfVol (float): TF volume
volMaLength (simple int): Volume MA length
Returns:
ResistanceLevel
ResistanceZone
SupportLevel
SupportZone
IsFractalUp
IsFractalDown
detectNewSR(resLevel, supLevel)
Detects a new fractal event (new support or resistance found).
Parameters:
resLevel (float): Current resistance level
supLevel (float): Current support level
Returns:
NewResistance
NewSupport
emaStackCoreLibrary "emaStackCore"
emaCalc(source, length)
Calculate EMA
Parameters:
source (float) : Price source (close, hl2, etc.)
length (simple int) : EMA period
Returns: EMA value
emaSlope(emaValue, lookback)
Calculate EMA slope (% change over lookback period)
Parameters:
emaValue (float) : Current EMA value
lookback (int) : Number of bars to look back
Returns: Slope in percentage
emaDist(ema1, ema2, mode, atrVal, price)
Calculate distance between 2 EMAs (normalized)
Parameters:
ema1 (float) : First EMA value
ema2 (float) : Second EMA value
mode (string) : Normalization mode ("ATR" or "%")
atrVal (float) : ATR value for ATR mode
price (float) : Reference price for % mode
Returns: Normalized distance
slopeClass(slope, thresholdFlat)
Classify EMA slope
Parameters:
slope (float) : EMA slope in %
thresholdFlat (float) : Threshold to consider slope as flat
Returns: +1 (rising), 0 (flat), -1 (falling)
slopeScore5(slope10, slope20, slope50, slope100, slope200, threshold)
Calculate combined slope score for 5 EMAs
Parameters:
slope10 (float) : EMA10 slope
slope20 (float) : EMA20 slope
slope50 (float) : EMA50 slope
slope100 (float) : EMA100 slope
slope200 (float) : EMA200 slope
threshold (float) : Flat threshold
Returns: Sum of slope classes (-5 to +5)
emaStack5Score(e10, e20, e50, e100, e200, tolEq)
Calculate EMA stack score (5 EMAs)
Parameters:
e10 (float) : EMA 10 value
e20 (float) : EMA 20 value
e50 (float) : EMA 50 value
e100 (float) : EMA 100 value
e200 (float) : EMA 200 value
tolEq (float) : Tolerance for equality (%)
Returns: Stack score (-4 to +4)
emaStack5ScoreWithSlope(e10, e20, e50, e100, e200, slope10, slope20, slope50, slope100, slope200, tolEq, slopeThreshold)
Enhanced EMA stack with slope
Parameters:
e10 (float)
e20 (float)
e50 (float)
e100 (float)
e200 (float)
slope10 (float)
slope20 (float)
slope50 (float)
slope100 (float)
slope200 (float)
tolEq (float)
slopeThreshold (float)
Returns:
emaRegimeChange(currentScore, previousScore, threshold)
Detect regime change in EMA stack
Parameters:
currentScore (int) : Current stack score
previousScore (int) : Previous stack score
threshold (int) : Minimum change to consider significant
Returns:
emaCompressed(e10, e20, e50, e100, e200, threshold)
Detect EMA compression (squeeze)
Parameters:
e10 (float) : EMA 10 value
e20 (float) : EMA 20 value
e50 (float) : EMA 50 value
e100 (float) : EMA 100 value
e200 (float) : EMA 200 value
threshold (float) : Max spread % to consider compressed
Returns:
emaConfluence9(price, e10_tf1, e20_tf1, e50_tf1, e10_tf2, e20_tf2, e50_tf2, e10_tf3, e20_tf3, e50_tf3, threshold)
Calculate confluence score (how many EMAs are near price)
Parameters:
price (float) : Current price
e10_tf1 (float) : EMA10 on timeframe 1
e20_tf1 (float) : EMA20 on timeframe 1
e50_tf1 (float) : EMA50 on timeframe 1
e10_tf2 (float) : EMA10 on timeframe 2
e20_tf2 (float) : EMA20 on timeframe 2
e50_tf2 (float) : EMA50 on timeframe 2
e10_tf3 (float) : EMA10 on timeframe 3
e20_tf3 (float) : EMA20 on timeframe 3
e50_tf3 (float) : EMA50 on timeframe 3
threshold (float) : Max distance % to consider "near"
Returns: Confluence count (0-9)
emaConfluence3(price, e10, e20, e50, threshold)
Simplified confluence for 3 EMAs on single TF
Parameters:
price (float)
e10 (float)
e20 (float)
e50 (float)
threshold (float)
Returns: Confluence count (0-3)
emaLeadLag(score15m, score1H, score4H, lookback)
Determine which timeframe is leading the move
Parameters:
score15m (int) : Stack score on 15m
score1H (int) : Stack score on 1H
score4H (int) : Stack score on 4H
lookback (int) : Bars to look back for change detection
Returns: Leader timeframe ("15m", "1H", "4H", "ALIGNED", "MIXED")
emaPriceDivergence(price, emaValue, lookback)
Detect divergence between price and EMA direction
Parameters:
price (float) : Current price
emaValue (float) : EMA value (typically EMA20)
lookback (int) : Bars to compare
Returns:
emaOrderStrength(e10, e20, e50, e100, e200)
Calculate EMA order strength (weighted by distance)
Parameters:
e10 (float) : EMA 10
e20 (float) : EMA 20
e50 (float) : EMA 50
e100 (float) : EMA 100
e200 (float) : EMA 200
Returns: Strength score (higher = stronger trend)
emaPriceZone(price, e10, e20, e50, e100, e200)
Determine which EMA zone price is in
Parameters:
price (float) : Current price
e10 (float) : EMA 10
e20 (float) : EMA 20
e50 (float) : EMA 50
e100 (float) : EMA 100
e200 (float) : EMA 200
Returns: Zone code (5=above all, 0=below all, -1=mixed)
kijunStackCoreLibrary "kijunStackCore"
kijun(highSeries, lowSeries, length)
Parameters:
highSeries (float)
lowSeries (float)
length (int)
distNormAtr(a, b, atrValue)
Parameters:
a (float)
b (float)
atrValue (float)
distNormPct(a, b, price)
Parameters:
a (float)
b (float)
price (float)
stack3Code(kFast, kMid, kSlow, distFastMid, distMidSlow, tolEq)
Parameters:
kFast (float)
kMid (float)
kSlow (float)
distFastMid (float)
distMidSlow (float)
tolEq (float)
stack3Compressed(distFastMid, distMidSlow, tight)
Parameters:
distFastMid (float)
distMidSlow (float)
tight (float)
stack3Stretched(distFastMid, distMidSlow, wide)
Parameters:
distFastMid (float)
distMidSlow (float)
wide (float)
QTCoreLibrary "QTCore"
qt_config_default()
qt_state_new()
qt_daily_update(st, cfg, t, tClose)
Parameters:
st (CycleState)
cfg (QTConfig)
t (int)
tClose (int)
qt_m90_update(st, cfg, t, tClose)
Parameters:
st (CycleState)
cfg (QTConfig)
t (int)
tClose (int)
qt_micro_update(st, cfg, t, tClose)
Parameters:
st (CycleState)
cfg (QTConfig)
t (int)
tClose (int)
qt_nano_update(st, cfg, t, tClose)
Parameters:
st (CycleState)
cfg (QTConfig)
t (int)
tClose (int)
QTConfig
Fields:
tz (series string)
dayStartHour (series int)
dayStartMin (series int)
keepCycles (series int)
tfDaily (series string)
tfM90 (series string)
tfMicro (series string)
tfNano (series string)
QuarterOHLC
Fields:
startTs (series int)
o (series float)
h (series float)
l (series float)
c (series float)
has (series bool)
CycleResult
Fields:
startTs (series int)
endTs (series int)
startRealized (series bool)
endRealized (series bool)
q1Ts (series int)
q2Ts (series int)
q3Ts (series int)
q4Ts (series int)
q2Realized (series bool)
q3Realized (series bool)
q4Realized (series bool)
curQuarterIndex (series int)
inWindow (series bool)
q1 (QuarterOHLC)
q2 (QuarterOHLC)
q3 (QuarterOHLC)
q4 (QuarterOHLC)
FixedCycleState
Fields:
starts (array)
lastStartTs (series int)
CycleState
Fields:
daily (FixedCycleState)
m90 (FixedCycleState)
micro (FixedCycleState)
nano (FixedCycleState)
TradingHelperLibLibrary "TradingHelperLib"
Trading Helper Library - Limit order, pip calculation and utility functions for trading bots
f_pipValue()
Calculates pip value based on symbol info
Returns: Pip value
f_pipsToPrice(pips)
Converts pip count to price difference
Parameters:
pips (float) : Number of pips
Returns: Price difference
calcExpireBarCount(minutesToExpire)
Converts minutes to bar count based on timeframe
Parameters:
minutesToExpire (float) : Duration in minutes
Returns: Bar count
calcLimitPrice(isLong, signalPrice, deviation, deviationType)
Calculates limit order price with deviation
Parameters:
isLong (bool) : True for long, false for short
signalPrice (float) : Signal price
deviation (float) : Deviation amount
deviationType (string) : Deviation type ("USDT" or "%")
Returns: Limit price
checkLimitFill(isLong, limitPrice)
Checks if limit order is filled
Parameters:
isLong (bool) : True for long, false for short
limitPrice (float) : Limit price to check
Returns: True if filled
f_multiplier(lvl, mode)
Calculates DCA multiplier based on level and mode
Parameters:
lvl (int) : DCA level
mode (string) : Multiplier mode ("Sabit", "Fibonacci", "Martingale", etc.)
Returns: Multiplier value
f_pctToPrice(pct, basePrice)
Converts percentage value to price difference
Parameters:
pct (float) : Percentage value (e.g. 2.0 = 2%)
basePrice (float) : Reference price
Returns: Price difference
f_priceChange_toPct(priceChange, basePrice)
Converts price change to percentage
Parameters:
priceChange (float) : Price difference
basePrice (float) : Reference price
Returns: Percentage value
calcMargin(notional, leverage)
Calculates margin from notional value
Parameters:
notional (float) : Trade size (e.g. $1000)
leverage (int) : Leverage value (e.g. 100)
Returns: Margin value
calcNotional(margin, leverage)
Calculates notional from margin
Parameters:
margin (float) : Collateral value
leverage (int) : Leverage value
Returns: Notional value
calcLiqPriceLongSimple(avgPrice, leverage)
Calculates simple liquidation price for Long position
Parameters:
avgPrice (float) : Average entry price
leverage (int) : Leverage value
Returns: Estimated liquidation price
calcLiqPriceShortSimple(avgPrice, leverage)
Calculates simple liquidation price for Short position
Parameters:
avgPrice (float) : Average entry price
leverage (int) : Leverage value
Returns: Estimated liquidation price
calcPnlLong(entryPrice, currentPrice, notional)
Calculates Long position PNL
Parameters:
entryPrice (float) : Entry price
currentPrice (float) : Current price
notional (float) : Position size
Returns: PNL value
calcPnlShort(entryPrice, currentPrice, notional)
Calculates Short position PNL
Parameters:
entryPrice (float) : Entry price
currentPrice (float) : Current price
notional (float) : Position size
Returns: PNL value
calcFee(notional, feeRate)
Calculates trading fee
Parameters:
notional (float) : Trade size
feeRate (float) : Fee rate in percentage (e.g. 0.1 = 0.1%)
Returns: Fee value
libhs_td6Library Overview Data for logger
This library contains test data used by library logger
import GETpacman/logger/x as logger
SpatialIndexYou can start using this now by inserthing this at the top of your indicator/strategy/library.
import ArunaReborn/SpatialIndex/1 as SI
Overview
SpatialIndex is a high-performance Pine Script library that implements price-bucketed spatial indexing for efficient proximity queries on large datasets. Instead of scanning through hundreds or thousands of items linearly (O(n)), this library provides O(k) bucket lookup where k is typically just a handful of buckets, dramatically improving performance for price-based filtering operations.
This library works with any data type through index-based references, making it universally applicable for support/resistance levels, pivot points, order zones, pattern detection points, Fair Value Gaps, and any other price-based data that needs frequent proximity queries.
Why This Library Exists
The Problem
When building advanced technical indicators that track large numbers of price levels (support/resistance zones, pivot points, order blocks, etc.), you often need to answer questions like:
- *"Which levels are within 5% of the current price?"*
- *"What zones overlap with this price range?"*
- *"Are there any significant levels near my entry point?"*
The naive approach is to loop through every single item and check its price. For 500 levels across multiple timeframes, this means 500 comparisons every bar . On instruments with thousands of historical bars, this quickly becomes a performance bottleneck that can cause scripts to time out or lag.
The Solution
SpatialIndex solves this by organizing items into price buckets —like filing cabinets organized by price range. When you query for items near $50,000, the library only looks in the relevant buckets (e.g., $49,000-$51,000 range), ignoring all other price regions entirely.
Performance Example:
- Linear scan: Check 500 items = 500 comparisons per query
- Spatial index: Check 3-5 buckets with ~10 items each = 30-50 comparisons per query
- Result: 10-16x faster queries
Key Features
Core Capabilities
- ✅ Generic Design : Works with any data type via index references
- ✅ Multiple Index Strategies : Fixed bucket size or ATR-based dynamic sizing
- ✅ Range Support : Index items that span price ranges (zones, gaps, channels)
- ✅ Efficient Queries : O(k) bucket lookup instead of O(n) linear scan
- ✅ Multiple Query Types : Proximity percentage, fixed range, exact price with tolerance
- ✅ Dynamic Updates : Add, remove, update items in O(1) time
- ✅ Batch Operations : Efficient bulk removal and reindexing
- ✅ Query Caching : Optional caching for repeated queries within same bar
- ✅ Statistics & Debugging : Built-in stats and diagnostic functions
### Advanced Features
- ATR-Based Bucketing : Automatically adjusts bucket sizes based on volatility
- Multi-Bucket Spanning : Items that span ranges are indexed in all overlapping buckets
- Reindexing Support : Handles array removals with automatic index shifting
- Cache Management : Configurable query caching with automatic invalidation
- Empty Bucket Cleanup : Automatically removes empty buckets to minimize memory
How It Works
The Bucketing Concept
Think of price space as divided into discrete buckets, like a histogram:
```
Price Range: $98-$100 $100-$102 $102-$104 $104-$106 $106-$108
Bucket Key: 49 50 51 52 53
Items:
```
When you query for items near $103:
1. Calculate which buckets overlap the $101.50-$104.50 range (keys 50, 51, 52)
2. Return items from only those buckets:
3. Never check items in buckets 49 or 53
Bucket Size Selection
Fixed Size Mode:
```pine
var SI.SpatialBucket index = SI.newSpatialBucket(2.0) // $2 per bucket
```
- Good for: Instruments with stable price ranges
- Example: For stocks trading at $100, 2.0 = 2% increments
ATR-Based Mode:
```pine
float atr = ta.atr(14)
var SI.SpatialBucket index = SI.newSpatialBucketATR(1.0, atr) // 1x ATR per bucket
SI.updateATR(index, atr) // Update each bar
```
- Good for: Instruments with varying volatility
- Adapts automatically to market conditions
- 1.0 multiplier = one bucket spans one ATR unit
Optimal Bucket Size:
The library includes a helper function to calculate optimal size:
```pine
float optimalSize = SI.calculateOptimalBucketSize(close, 5.0) // For 5% proximity queries
```
This ensures queries span approximately 3 buckets for optimal performance.
Index-Based Architecture
The library doesn't store your actual data—it only stores indices that point to your external arrays:
```pine
// Your data
var array levels = array.new()
var array types = array.new()
var array ages = array.new()
// Your index
var SI.SpatialBucket index = SI.newSpatialBucket(2.0)
// Add a level
array.push(levels, 50000.0)
array.push(types, "support")
array.push(ages, 0)
SI.add(index, array.size(levels) - 1, 50000.0) // Store index 0
// Query near current price
SI.QueryResult result = SI.queryProximity(index, close, 5.0)
for idx in result.indices
float level = array.get(levels, idx)
string type = array.get(types, idx)
// Work with your actual data
```
This design means:
- ✅ Works with any data structure you define
- ✅ No data duplication
- ✅ Minimal memory footprint
- ✅ Full control over your data
---
Usage Guide
Basic Setup
```pine
// Import library
import username/SpatialIndex/1 as SI
// Create index
var SI.SpatialBucket index = SI.newSpatialBucket(2.0)
// Your data arrays
var array supportLevels = array.new()
var array touchCounts = array.new()
```
Adding Items
Single Price Point:
```pine
// Add a support level at $50,000
array.push(supportLevels, 50000.0)
array.push(touchCounts, 1)
int levelIdx = array.size(supportLevels) - 1
SI.add(index, levelIdx, 50000.0)
```
Price Range (Zones/Gaps):
```pine
// Add a resistance zone from $51,000 to $52,000
array.push(zoneBottoms, 51000.0)
array.push(zoneTops, 52000.0)
int zoneIdx = array.size(zoneBottoms) - 1
SI.addRange(index, zoneIdx, 51000.0, 52000.0) // Indexed in all overlapping buckets
```
Querying Items
Proximity Query (Percentage):
```pine
// Find all levels within 5% of current price
SI.QueryResult result = SI.queryProximity(index, close, 5.0)
if array.size(result.indices) > 0
for idx in result.indices
float level = array.get(supportLevels, idx)
// Process nearby level
```
Fixed Range Query:
```pine
// Find all items between $49,000 and $51,000
SI.QueryResult result = SI.queryRange(index, 49000.0, 51000.0)
```
Exact Price with Tolerance:
```pine
// Find items at exactly $50,000 +/- $100
SI.QueryResult result = SI.queryAt(index, 50000.0, 100.0)
```
Removing Items
Safe Removal Pattern:
```pine
SI.QueryResult result = SI.queryProximity(index, close, 5.0)
if array.size(result.indices) > 0
// IMPORTANT: Sort descending to safely remove from arrays
array sorted = SI.sortIndicesDescending(result)
for idx in sorted
// Remove from index
SI.remove(index, idx)
// Remove from your data arrays
array.remove(supportLevels, idx)
array.remove(touchCounts, idx)
// Reindex to maintain consistency
SI.reindexAfterRemoval(index, idx)
```
Batch Removal (More Efficient):
```pine
// Collect indices to remove
array toRemove = array.new()
for i = 0 to array.size(supportLevels) - 1
if array.get(touchCounts, i) > 10 // Remove old levels
array.push(toRemove, i)
// Remove in descending order from data arrays
array sorted = array.copy(toRemove)
array.sort(sorted, order.descending)
for idx in sorted
SI.remove(index, idx)
array.remove(supportLevels, idx)
array.remove(touchCounts, idx)
// Batch reindex (much faster than individual reindexing)
SI.reindexAfterBatchRemoval(index, toRemove)
```
Updating Items
```pine
// Update a level's price (e.g., after refinement)
float newPrice = 50100.0
SI.update(index, levelIdx, newPrice)
array.set(supportLevels, levelIdx, newPrice)
// Update a zone's range
SI.updateRange(index, zoneIdx, 51000.0, 52500.0)
array.set(zoneBottoms, zoneIdx, 51000.0)
array.set(zoneTops, zoneIdx, 52500.0)
```
Query Caching
For repeated queries within the same bar:
```pine
// Create cache (persistent)
var SI.CachedQuery cache = SI.newCachedQuery()
// Cached query (returns cached result if parameters match)
SI.QueryResult result = SI.queryProximityCached(
index,
cache,
close,
5.0, // proximity%
1 // cache duration in bars
)
// Invalidate cache when index changes significantly
if bigChangeDetected
SI.invalidateCache(cache)
```
---
Practical Examples
Example 1: Support/Resistance Finder
```pine
//@version=6
indicator("S/R with Spatial Index", overlay=true)
import username/SpatialIndex/1 as SI
// Data storage
var array levels = array.new()
var array types = array.new() // "support" or "resistance"
var array touches = array.new()
var array ages = array.new()
// Spatial index
var SI.SpatialBucket index = SI.newSpatialBucket(close * 0.02) // 2% buckets
// Detect pivots
bool isPivotHigh = ta.pivothigh(high, 5, 5)
bool isPivotLow = ta.pivotlow(low, 5, 5)
// Add new levels
if isPivotHigh
array.push(levels, high )
array.push(types, "resistance")
array.push(touches, 1)
array.push(ages, 0)
SI.add(index, array.size(levels) - 1, high )
if isPivotLow
array.push(levels, low )
array.push(types, "support")
array.push(touches, 1)
array.push(ages, 0)
SI.add(index, array.size(levels) - 1, low )
// Find nearby levels (fast!)
SI.QueryResult nearby = SI.queryProximity(index, close, 3.0) // Within 3%
// Process nearby levels
for idx in nearby.indices
float level = array.get(levels, idx)
string type = array.get(types, idx)
// Check for touch
if type == "support" and low <= level and low > level
array.set(touches, idx, array.get(touches, idx) + 1)
else if type == "resistance" and high >= level and high < level
array.set(touches, idx, array.get(touches, idx) + 1)
// Age and cleanup old levels
for i = array.size(ages) - 1 to 0
array.set(ages, i, array.get(ages, i) + 1)
// Remove levels older than 500 bars or with 5+ touches
if array.get(ages, i) > 500 or array.get(touches, i) >= 5
SI.remove(index, i)
array.remove(levels, i)
array.remove(types, i)
array.remove(touches, i)
array.remove(ages, i)
SI.reindexAfterRemoval(index, i)
// Visualization
for idx in nearby.indices
line.new(bar_index, array.get(levels, idx), bar_index + 10, array.get(levels, idx),
color=array.get(types, idx) == "support" ? color.green : color.red)
```
Example 2: Multi-Timeframe Zone Detector
```pine
//@version=6
indicator("MTF Zones", overlay=true)
import username/SpatialIndex/1 as SI
// Store zones from multiple timeframes
var array zoneBottoms = array.new()
var array zoneTops = array.new()
var array zoneTimeframes = array.new()
// ATR-based spatial index for adaptive bucketing
var SI.SpatialBucket index = SI.newSpatialBucketATR(1.0, ta.atr(14))
SI.updateATR(index, ta.atr(14)) // Update bucket size with volatility
// Request higher timeframe data
= request.security(syminfo.tickerid, "240", )
// Detect HTF zones
if not na(htf_high) and not na(htf_low)
float zoneTop = htf_high
float zoneBottom = htf_low * 0.995 // 0.5% zone thickness
// Check if zone already exists nearby
SI.QueryResult existing = SI.queryRange(index, zoneBottom, zoneTop)
if array.size(existing.indices) == 0 // No overlapping zones
// Add new zone
array.push(zoneBottoms, zoneBottom)
array.push(zoneTops, zoneTop)
array.push(zoneTimeframes, "4H")
int idx = array.size(zoneBottoms) - 1
SI.addRange(index, idx, zoneBottom, zoneTop)
// Query zones near current price
SI.QueryResult nearbyZones = SI.queryProximity(index, close, 2.0) // Within 2%
// Highlight nearby zones
for idx in nearbyZones.indices
box.new(bar_index - 50, array.get(zoneBottoms, idx),
bar_index, array.get(zoneTops, idx),
bgcolor=color.new(color.blue, 90))
```
### Example 3: Performance Comparison
```pine
//@version=6
indicator("Spatial Index Performance Test")
import username/SpatialIndex/1 as SI
// Generate 500 random levels
var array levels = array.new()
var SI.SpatialBucket index = SI.newSpatialBucket(close * 0.02)
if bar_index == 0
for i = 0 to 499
float randomLevel = close * (0.9 + math.random() * 0.2) // +/- 10%
array.push(levels, randomLevel)
SI.add(index, i, randomLevel)
// Method 1: Linear scan (naive approach)
int linearCount = 0
float proximityPct = 5.0
float lowBand = close * (1 - proximityPct/100)
float highBand = close * (1 + proximityPct/100)
for i = 0 to array.size(levels) - 1
float level = array.get(levels, i)
if level >= lowBand and level <= highBand
linearCount += 1
// Method 2: Spatial index query
SI.QueryResult result = SI.queryProximity(index, close, proximityPct)
int spatialCount = array.size(result.indices)
// Compare performance
plot(result.queryCount, "Items Examined (Spatial)", color=color.green)
plot(linearCount, "Items Examined (Linear)", color=color.red)
plot(spatialCount, "Results Found", color=color.blue)
// Spatial index typically examines 10-50 items vs 500 for linear scan!
```
API Reference Summary
Initialization
- `newSpatialBucket(bucketSize)` - Fixed bucket size
- `newSpatialBucketATR(atrMultiplier, atrValue)` - ATR-based buckets
- `updateATR(sb, newATR)` - Update ATR for dynamic sizing
Adding Items
- `add(sb, itemIndex, price)` - Add item at single price point
- `addRange(sb, itemIndex, priceBottom, priceTop)` - Add item spanning range
Querying
- `queryProximity(sb, refPrice, proximityPercent)` - Query by percentage
- `queryRange(sb, priceBottom, priceTop)` - Query fixed range
- `queryAt(sb, price, tolerance)` - Query exact price with tolerance
- `queryProximityCached(sb, cache, refPrice, pct, duration)` - Cached query
Removing & Updating
- `remove(sb, itemIndex)` - Remove item
- `update(sb, itemIndex, newPrice)` - Update item price
- `updateRange(sb, itemIndex, newBottom, newTop)` - Update item range
- `reindexAfterRemoval(sb, removedIndex)` - Reindex after single removal
- `reindexAfterBatchRemoval(sb, removedIndices)` - Batch reindex
- `clear(sb)` - Remove all items
Utilities
- `size(sb)` - Get item count
- `isEmpty(sb)` - Check if empty
- `contains(sb, itemIndex)` - Check if item exists
- `getStats(sb)` - Get debug statistics string
- `calculateOptimalBucketSize(price, pct)` - Calculate optimal bucket size
- `sortIndicesDescending(result)` - Sort for safe removal
- `sortIndicesAscending(result)` - Sort ascending
Performance Characteristics
Time Complexity
- Add : O(1) for single point, O(m) for range spanning m buckets
- Remove : O(1) lookup + O(b) bucket cleanup where b = buckets item spans
- Query : O(k) where k = buckets in range (typically 3-5) vs O(n) linear scan
- Update : O(1) removal + O(1) addition = O(1) total
Space Complexity
- Memory per item : ~8 bytes for index reference + map overhead
- Bucket overhead : Proportional to price range coverage
- Typical usage : For 500 items with 50 active buckets ≈ 4-8KB total
Scalability
- ✅ 100 items : ~5-10x faster than linear scan
- ✅ 500 items : ~10-15x faster
- ✅ 1000+ items : ~15-20x faster
- ⚠️ Performance degrades if bucket size is too small (too many buckets)
- ⚠️ Performance degrades if bucket size is too large (too many items per bucket)
Best Practices
Bucket Size Selection
1. Start with 2-5% of asset price for percentage-based queries
2. Use ATR-based mode for volatile assets or multi-symbol scripts
3. Test bucket size using `calculateOptimalBucketSize()` function
4. Monitor with `getStats()` to ensure reasonable bucket count
Memory Management
1. Clear old items regularly to prevent unbounded growth
2. Use age tracking to remove stale data
3. Set maximum item limits based on your needs
4. Batch removals are more efficient than individual removals
Query Optimization
1. Use caching for repeated queries within same bar
2. Invalidate cache when index changes significantly
3. Sort results descending before removal iteration
4. Batch operations when possible (reindexing, removal)
Data Consistency
1. Always reindex after removal to maintain index alignment
2. Remove from arrays in descending order to avoid index shifting issues
3. Use batch reindex for multiple simultaneous removals
4. Keep external arrays and index in sync at all times
Limitations & Caveats
Known Limitations
- Not suitable for exact price matching : Use tolerance with `queryAt()`
- Bucket size affects performance : Too small = many buckets, too large = many items per bucket
- Memory usage : Scales with price range coverage and item count
- Reindexing overhead : Removing items mid-array requires index shifting
When NOT to Use
- ❌ Datasets with < 50 items (linear scan is simpler)
- ❌ Items that change price every bar (constant reindexing overhead)
- ❌ When you need ALL items every time (no benefit over arrays)
- ❌ Exact price level matching without tolerance (use maps instead)
When TO Use
- ✅ Large datasets (100+ items) with occasional queries
- ✅ Proximity-based filtering (% of price, ATR-based ranges)
- ✅ Multi-timeframe level tracking
- ✅ Zone/range overlap detection
- ✅ Price-based spatial filtering
---
Technical Details
Bucketing Algorithm
Items are assigned to buckets using integer division:
```
bucketKey = floor((price - basePrice) / bucketSize)
```
For ATR-based mode:
```
effectiveBucketSize = atrValue × atrMultiplier
bucketKey = floor((price - basePrice) / effectiveBucketSize)
```
Range Indexing
Items spanning price ranges are indexed in all overlapping buckets to ensure accurate range queries. The midpoint bucket is designated as the "primary bucket" for removal operations.
Index Consistency
The library maintains two maps:
1. `buckets`: Maps bucket keys → IntArray wrappers containing item indices
2. `itemToBucket`: Maps item indices → primary bucket key (for O(1) removal)
This dual-mapping ensures both fast queries and fast removal while maintaining consistency.
Implementation Note: Pine Script doesn't allow nested collections (map containing arrays directly), so the library uses an `IntArray` wrapper type to hold arrays within the map structure. This is an internal implementation detail that doesn't affect usage.
---
Version History
Version 1.0
- Initial release
Credits & License
License : Mozilla Public License 2.0 (TradingView default)
Library Type : Open-source educational resource
This library is designed as a public domain utility for the Pine Script community. As per TradingView library rules, this code can be freely reused by other authors. If you use this library in your scripts, please provide appropriate credit as required by House Rules.
Summary
SpatialIndex is a specialized library that solves a specific problem: fast proximity queries on large price-based datasets . If you're building indicators that track hundreds of levels, zones, or price points and need to frequently filter by proximity to current price, this library can provide 10-20x performance improvements over naive linear scanning.
The index-based architecture makes it universally applicable to any data type, and the ATR-based bucketing ensures it adapts to market conditions automatically. Combined with query caching and batch operations, it provides a complete solution for spatial data management in Pine Script.
Use this library when speed matters and your dataset is large.
MLMatrixLibOverview
MLMatrixLib is a comprehensive Pine Script v6 library implementing machine learning algorithms using native matrix operations. This library provides traders and developers with a toolkit of statistical and ML methods for building quantitative trading systems, performing data analysis, and creating adaptive indicators.
How It Works
The library leverages Pine Script's native matrix type to perform efficient linear algebra operations. Each algorithm is implemented from first principles, using matrix decomposition, iterative optimization, and statistical estimation techniques. All functions are designed for numerical stability with careful handling of edge cases.
---
Library Contents (34 Sections)
Section 1: Utility Functions & Matrix Operations
Core building blocks including:
• identity(n) - Creates n×n identity matrix
• diagonal(values) - Creates diagonal matrix from array
• ones(rows, cols) / zeros(rows, cols) - Matrix constructors
• frobeniusNorm(m) / l1Norm(m) - Matrix norm calculations
• hadamard(m1, m2) - Element-wise multiplication
• columnMeans(m) / rowMeans(m) - Statistical aggregations
• standardize(m) - Z-score normalization (zero mean, unit variance)
• minMaxNormalize(m) - Scale values to range
• fitStandardScaler(m) / fitMinMaxScaler(m) - Reusable scaler parameters
• addBiasColumn(m) - Prepend column of ones for regression
• arrayMedian(arr) / arrayPercentile(arr, p) - Array statistics
Section 2: Activation Functions
Numerically stable implementations:
• sigmoid(x) / sigmoidMatrix(m) - Logistic function with overflow protection
• tanhActivation(x) / tanhMatrix(m) - Hyperbolic tangent
• relu(x) / reluMatrix(m) - Rectified Linear Unit
• leakyRelu(x, alpha) - Leaky ReLU with configurable slope
• elu(x, alpha) - Exponential Linear Unit
• Derivatives for backpropagation: sigmoidDerivative, tanhDerivative, reluDerivative
Section 3: Linear Regression (OLS)
Ordinary Least Squares implementation using the normal equation (X'X)⁻¹X'y:
• fitLinearRegression(X, y) - Fits model, returns coefficients, R², standard error
• fitSimpleLinearRegression(x, y) - Single-variable regression
• predictLinear(model, X) - Generate predictions
• predictionInterval(model, X, confidence) - Confidence intervals using t-distribution
• Model type stores: coefficients, R-squared, residuals, standard error
Section 4: Weighted Linear Regression
Generalized least squares with observation weights:
• fitWeightedLinearRegression(X, y, weights) - Solves (X'WX)⁻¹X'Wy
• Useful for downweighting outliers or emphasizing recent data
Section 5: Polynomial Regression
Fits polynomials of arbitrary degree:
• fitPolynomialRegression(x, y, degree) - Constructs Vandermonde matrix
• predictPolynomial(model, x) - Evaluate polynomial at points
Section 6: Ridge Regression (L2 Regularization)
Adds penalty term λ||β||² to prevent overfitting:
• fitRidgeRegression(X, y, lambda) - Solves (X'X + λI)⁻¹X'y
• Lambda parameter controls regularization strength
Section 7: LASSO Regression (L1 Regularization)
Coordinate descent algorithm for sparse solutions:
• fitLassoRegression(X, y, lambda, maxIter, tolerance) - Iterative soft-thresholding
• Produces sparse coefficients by driving some to exactly zero
• softThreshold(x, lambda) - Core shrinkage operator
Section 8: Elastic Net (L1 + L2 Regularization)
Combines LASSO and Ridge penalties:
• fitElasticNet(X, y, lambda, alpha, maxIter, tolerance)
• Alpha balances L1 vs L2: alpha=1 is LASSO, alpha=0 is Ridge
Section 9: Huber Robust Regression
Iteratively Reweighted Least Squares (IRLS) for outlier resistance:
• fitHuberRegression(X, y, delta, maxIter, tolerance)
• Delta parameter defines transition between L1 and L2 loss
• Downweights observations with large residuals
Section 10: Quantile Regression
Estimates conditional quantiles using linear programming approximation:
• fitQuantileRegression(X, y, tau, maxIter, tolerance)
• Tau specifies quantile (0.5 = median, 0.25 = lower quartile, etc.)
Section 11: Logistic Regression (Binary Classification)
Gradient descent optimization of cross-entropy loss:
• fitLogisticRegression(X, y, learningRate, maxIter, tolerance)
• predictProbability(model, X) - Returns probabilities
• predictClass(model, X, threshold) - Returns binary predictions
Section 12: Linear SVM (Support Vector Machine)
Sub-gradient descent with hinge loss:
• fitLinearSVM(X, y, C, learningRate, maxIter)
• C parameter controls regularization (higher = harder margin)
• predictSVM(model, X) - Returns class predictions
Section 13: Recursive Least Squares (RLS)
Online learning with exponential forgetting:
• createRLSState(nFeatures, lambda, delta) - Initialize state
• updateRLS(state, x, y) - Update with new observation
• Lambda is forgetting factor (0.95-0.99 typical)
• Useful for adaptive indicators that update incrementally
Section 14: Covariance and Correlation
Matrix statistics:
• covarianceMatrix(m) - Sample covariance
• correlationMatrix(m) - Pearson correlations
• pearsonCorrelation(x, y) - Single correlation coefficient
• spearmanCorrelation(x, y) - Rank-based correlation
Section 15: Principal Component Analysis (PCA)
Dimensionality reduction via eigendecomposition:
• fitPCA(X, nComponents) - Power iteration method
• transformPCA(X, model) - Project data onto principal components
• Returns components, explained variance, and mean
Section 16: K-Means Clustering
Lloyd's algorithm with k-means++ initialization:
• fitKMeans(X, k, maxIter, tolerance) - Cluster data points
• predictCluster(model, X) - Assign new points to clusters
• withinClusterVariance(model) - Measure cluster compactness
Section 17: Gaussian Mixture Model (GMM)
Expectation-Maximization algorithm:
• fitGMM(X, k, maxIter, tolerance) - Soft clustering with probabilities
• predictProbaGMM(model, X) - Returns membership probabilities
• Models data as mixture of Gaussian distributions
Section 18: Kalman Filter
Linear state estimation:
• createKalman1D(processNoise, measurementNoise, ...) - 1D filter
• createKalman2D(processNoise, measurementNoise) - Position + velocity tracking
• kalmanStep(state, measurement) - Predict-update cycle
• Optimal filtering for noisy measurements
Section 19: K-Nearest Neighbors (KNN)
Instance-based learning:
• fitKNN(X, y) - Store training data
• predictKNN(model, X, k) - Classify by majority vote
• predictKNNRegression(model, X, k) - Average of k neighbors
• predictKNNWeighted(model, X, k) - Distance-weighted voting
Section 20: Neural Network (Feedforward)
Multi-layer perceptron:
• createNeuralNetwork(architecture) - Define layer sizes
• trainNeuralNetwork(nn, X, y, learningRate, epochs) - Backpropagation
• predictNN(nn, X) - Forward pass
• Supports configurable hidden layers
Section 21: Naive Bayes Classifier
Gaussian Naive Bayes:
• fitNaiveBayes(X, y) - Estimate class-conditional distributions
• predictNaiveBayes(model, X) - Maximum a posteriori classification
• Assumes feature independence given class
Section 22: Anomaly Detection
Statistical outlier detection:
• fitAnomalyDetector(X, contamination) - Mahalanobis distance-based
• detectAnomalies(model, X) - Returns anomaly scores
• isAnomaly(model, X, threshold) - Binary classification
Section 23: Dynamic Time Warping (DTW)
Time series similarity:
• dtw(series1, series2) - Compute DTW distance
• Handles sequences of different lengths
• Useful for pattern matching
Section 24: Markov Chain / Regime Detection
Discrete state transitions:
• fitMarkovChain(states, nStates) - Estimate transition matrix
• predictNextState(transitionMatrix, currentState) - Most likely next state
• stationaryDistribution(transitionMatrix) - Long-run probabilities
Section 25: Hidden Markov Model (Simple)
Baum-Welch algorithm:
• fitHMM(observations, nStates, maxIter) - EM training
• viterbi(model, observations) - Most likely state sequence
• Useful for regime detection
Section 26: Exponential Smoothing & Holt-Winters
Time series smoothing:
• exponentialSmooth(data, alpha) - Simple exponential smoothing
• holtWinters(data, alpha, beta, gamma, seasonLength) - Triple smoothing
• Captures trend and seasonality
Section 27: Entropy and Information Theory
Information measures:
• entropy(probabilities) - Shannon entropy in bits
• conditionalEntropy(jointProbs, marginalProbs) - H(X|Y)
• mutualInformation(probsX, probsY, jointProbs) - I(X;Y)
• kldivergence(p, q) - Kullback-Leibler divergence
Section 28: Hurst Exponent
Long-range dependence measure:
• hurstExponent(data) - R/S analysis
• H < 0.5: mean-reverting, H = 0.5: random walk, H > 0.5: trending
Section 29: Change Detection (CUSUM)
Cumulative sum control chart:
• cusumChangeDetection(data, threshold, drift) - Detect regime changes
• cusumOnline(value, prevCusumPos, prevCusumNeg, target, drift) - Streaming version
Section 30: Autocorrelation
Serial dependence analysis:
• autocorrelation(data, maxLag) - ACF for all lags
• partialAutocorrelation(data, maxLag) - PACF via Durbin-Levinson
• Useful for time series model identification
Section 31: Ensemble Methods
Model combination:
• baggingPredict(models, X) - Average predictions
• votingClassify(models, X) - Majority vote
• Improves robustness through aggregation
Section 32: Model Evaluation Metrics
Performance assessment:
• mse(actual, predicted) / rmse / mae / mape - Regression metrics
• accuracy(actual, predicted) - Classification accuracy
• precision / recall / f1Score - Binary classification metrics
• confusionMatrix(actual, predicted, nClasses) - Multi-class evaluation
• rSquared(actual, predicted) / adjustedRSquared - Goodness of fit
Section 33: Cross-Validation
Model validation:
• trainTestSplit(X, y, trainRatio) - Random split
• Foundation for walk-forward validation
Section 34: Trading Convenience Functions
Trading-specific utilities:
• priceMatrix(length) - OHLC data as matrix
• logReturns(length) - Log return series
• rollingSlope(src, length) - Linear trend strength
• kalmanFilter(src, processNoise, measurementNoise) - Filtered price
• kalmanFilter2D(src, ...) - Price with velocity estimate
• adaptiveMA(src, sensitivity) - Kalman-based adaptive moving average
• volAdjMomentum(src, length) - Volatility-normalized momentum
• detectSRLevels(length, nLevels) - K-means based S/R detection
• buildFeatures(src, lengths) - Multi-timeframe feature construction
• technicalFeatures(length) - Standard indicator feature set (RSI, MACD, BB, ATR, etc.)
• lagFeatures(src, lags) - Time-lagged features
• sharpeRatio(returns) - Risk-adjusted return measure
• sortinoRatio(returns) - Downside risk-adjusted return
• maxDrawdown(equity) - Maximum peak-to-trough decline
• calmarRatio(returns, equity) - Return/drawdown ratio
• kellyCriterion(winRate, avgWin, avgLoss) - Optimal position sizing
• fractionalKelly(...) - Conservative Kelly sizing
• rollingBeta(assetReturns, benchmarkReturns) - Market exposure
• fractalDimension(data) - Market complexity measure
---
Usage Example
```
import YourUsername/MLMatrixLib/1 as ml
// Create feature matrix
matrix X = ml.priceMatrix(50)
X := ml.standardize(X)
// Fit linear regression
ml.LinearRegressionModel model = ml.fitLinearRegression(X, y)
float prediction = ml.predictLinear(model, X_new)
// Kalman filter for smoothing
float smoothedPrice = ml.kalmanFilter(close, 0.01, 1.0)
// Detect support/resistance levels
array levels = ml.detectSRLevels(100, 3)
// K-means clustering for regime detection
ml.KMeansModel km = ml.fitKMeans(features, 3)
int cluster = ml.predictCluster(km, newFeature)
```
---
Technical Notes
• All matrix operations use Pine Script's native matrix type
• Numerical stability ensured through:
- Clamping exponential arguments to prevent overflow
- Division by zero protection with epsilon thresholds
- Iterative algorithms with convergence tolerance
• Designed for bar-by-bar execution in Pine Script's event-driven model
• Compatible with Pine Script v6
---
Disclaimer
This library provides mathematical tools for quantitative analysis. It does not constitute financial advice. Past performance of any algorithm does not guarantee future results. Users are responsible for validating models on their specific use cases and understanding the limitations of each method.
InfinityCandlePatternsLibrary "InfinityCandlePatterns"
isMorningStar(o, c, atr)
Parameters:
o (float)
c (float)
atr (float)
isEveningStar(o, c, atr)
Parameters:
o (float)
c (float)
atr (float)
isThreeWhiteSoldiers(o, h, c, atr)
Parameters:
o (float)
h (float)
c (float)
atr (float)
isThreeBlackCrows(o, l, c, atr)
Parameters:
o (float)
l (float)
c (float)
atr (float)
isBullishHarami(o, c, atr)
Parameters:
o (float)
c (float)
atr (float)
isBearishHarami(o, c, atr)
Parameters:
o (float)
c (float)
atr (float)
isBullishEngulfing(o, c)
Parameters:
o (float)
c (float)
isBearishEngulfing(o, c)
Parameters:
o (float)
c (float)
isThreeInsideUp(o, h, c, atr)
Parameters:
o (float)
h (float)
c (float)
atr (float)
isThreeInsideDown(o, l, c, atr)
Parameters:
o (float)
l (float)
c (float)
atr (float)
isTweezerBottom(o, l, c, atr)
Parameters:
o (float)
l (float)
c (float)
atr (float)
isTweezerTop(o, h, c, atr)
Parameters:
o (float)
h (float)
c (float)
atr (float)
isBullishKicker(o, c)
Parameters:
o (float)
c (float)
isBearishKicker(o, c)
Parameters:
o (float)
c (float)
isBullishBreakaway(o, c, atr)
Parameters:
o (float)
c (float)
atr (float)
isBearishBreakaway(o, c, atr)
Parameters:
o (float)
c (float)
atr (float)
isHammer(o, h, l, c, atr)
Parameters:
o (float)
h (float)
l (float)
c (float)
atr (float)
isShootingStar(o, h, l, c, atr)
Parameters:
o (float)
h (float)
l (float)
c (float)
atr (float)
isStandardDoji(o, c, atr)
Parameters:
o (float)
c (float)
atr (float)
isDragonflyDoji(o, h, l, c, atr)
Parameters:
o (float)
h (float)
l (float)
c (float)
atr (float)
isGravestoneDoji(o, h, l, c, atr)
Parameters:
o (float)
h (float)
l (float)
c (float)
atr (float)
isBullishMarubozu(o, h, l, c, atr)
Parameters:
o (float)
h (float)
l (float)
c (float)
atr (float)
isBearishMarubozu(o, h, l, c, atr)
Parameters:
o (float)
h (float)
l (float)
c (float)
atr (float)
isSpinningTop(o, h, l, c, atr)
Parameters:
o (float)
h (float)
l (float)
c (float)
atr (float)
bullAny(o, h, l, c, atr)
Parameters:
o (float)
h (float)
l (float)
c (float)
atr (float)
bearAny(o, h, l, c, atr)
Parameters:
o (float)
h (float)
l (float)
c (float)
atr (float)
neutralAny(o, h, l, c, atr)
Parameters:
o (float)
h (float)
l (float)
c (float)
atr (float)
bullStrong(o, h, c, atr)
Parameters:
o (float)
h (float)
c (float)
atr (float)
bearStrong(o, l, c, atr)
Parameters:
o (float)
l (float)
c (float)
atr (float)
TimeframeAlignTHE PROBLEM THIS LIBRARY SOLVES
When you use `request.security()` to get data from a Higher Timeframe (HTF) and try to draw objects like boxes, lines, or labels, they appear at the wrong horizontal position . This is the "floating in space" problem.
Why does this happen?
The `bar_index` in Pine Script refers to where data was RECEIVED , not where the event OCCURRED .
Consider this scenario:
• You're on a 5-minute chart
• You request 1-hour data for drawing an FVG (Fair Value Gap)
• A 1H candle spans 12 chart bars (60min / 5min = 12)
• But your code draws at `bar_index - 1` or `bar_index - 3`
• The result: your FVG box is only 2-3 bars wide instead of spanning the correct 12-36 bars
This library solves that by tracking where HTF bars actually start and end on your chart timeframe.
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
HOW TO USE THIS LIBRARY
Step 1: Import the Library
```
import ArunaReborn/TimeframeAlign/1 as tfa
```
Step 2: Create a Tracker for Each HTF
```
var tfa.HTFTracker tracker1H = tfa.createTracker("60")
```
Step 3: Update the Tracker Every Bar
```
tfa.updateTracker(tracker1H, "60")
```
Step 4: Use Synced Drawing Functions
```
if tfa.htfBarChanged(tracker1H)
tfa.syncedBox(tracker1H, 3, 1, topPrice, bottomPrice, color.new(color.green, 80))
```
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
EXPORTED TYPES
TimeframePair
Stores metadata about the relationship between source and chart timeframes.
• sourceTimeframe - The HTF/LTF being compared
• chartTimeframe - Current chart timeframe
• isHTF - True if source is higher than chart
• isLTF - True if source is lower than chart
• barRatio - Chart bars per source bar
• secondsRatio - Time ratio between timeframes
MTFEventData
Stores synchronized event data with correct bar positions.
• price - Price level of the event
• eventTime - Unix timestamp of the event
• chartBarStart - Chart bar_index where event's TF bar started
• chartBarEnd - Chart bar_index where event's TF bar ended
• htfOffset - The HTF offset used
• isValid - True if synchronization succeeded
HTFTracker
Tracks HTF bar boundaries. Create one per timeframe you need to track.
• htfTimeframe - The timeframe being tracked
• currentStartBar - Where current HTF bar started
• currentEndBar - Where current HTF bar ends (provisional)
• startHistory - Array of historical start positions
• endHistory - Array of historical end positions
• lastUpdateBar - Last bar_index when updated
• barJustChanged - True if HTF bar changed on this chart bar (set by updateTracker)
SyncedBox
Managed box with synchronization metadata.
• bx - The Pine Script box object
• htfTimeframe - Source timeframe
• leftHtfOffset / rightHtfOffset - HTF offsets for edges
• topPrice / bottomPrice - Price boundaries
• extendRight - Auto-extend flag
SyncedLine
Managed line with synchronization metadata.
• ln - The Pine Script line object
• htfTimeframe - Source timeframe
• htfOffset - Anchor offset
• price - Price level (horizontal lines)
• isHorizontal - Line orientation
• extendRight - Auto-extend flag
SyncedLabel
Managed label with synchronization metadata.
• lbl - The Pine Script label object
• htfTimeframe - Source timeframe
• htfOffset - Anchor offset
• price - Price level
• anchorPoint - "start", "end", or "middle"
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
EXPORTED FUNCTIONS
━━ CORE FUNCTIONS ━━
getTimeframeInfo(sourceTimeframe)
Analyzes relationship between a source TF and chart TF.
Returns: TimeframePair with comparison metadata
createTracker(htfTimeframe)
Creates a new HTF tracker. Call once per timeframe, store with `var`.
Returns: HTFTracker instance
updateTracker(tracker, htfTimeframe, historyDepth)
Updates tracker with current bar data. Call on every bar.
• htfTimeframe: The timeframe string (must match createTracker)
• historyDepth: Max HTF bars to track (default 500)
Returns: Updated tracker
getStartBar(tracker, htfOffset)
Gets chart bar_index where a specific HTF bar started.
• htfOffset: 0=current, 1=previous, 2=two bars ago, etc.
Returns: bar_index or na
getEndBar(tracker, htfOffset)
Gets chart bar_index where a specific HTF bar ended.
Returns: bar_index or na
htfBarChanged(tracker)
Detects when HTF bar just changed.
Returns: True on first chart bar of new HTF bar
findBarAtTime(timestamp, maxLookback)
Searches backward to find chart bar containing a timestamp.
• maxLookback: How far back to search (default 500)
Returns: bar_index or na
syncEventToChart(tracker, eventPrice, eventTime, anchorPoint)
Generic sync function mapping any event to correct chart position.
• anchorPoint: "start", "end", or "middle"
Returns: MTFEventData
━━ DRAWING CREATION FUNCTIONS ━━
syncedBox(tracker, leftHtfOffset, rightHtfOffset, topPrice, bottomPrice, bgcolor, ...)
Creates a box at correct HTF-aligned position.
• leftHtfOffset: HTF bars back for left edge
• rightHtfOffset: HTF bars back for right edge
• extendRight: Auto-extend to current bar
Returns: SyncedBox or na
syncedHLine(tracker, htfOffset, price, lineColor, lineStyle, lineWidth, extendRight)
Creates horizontal line anchored to HTF bar start.
• extendRight: If true, extends to current bar (default true)
Returns: SyncedLine or na
syncedVLine(tracker, htfOffset, atStart, lineColor, lineStyle, lineWidth)
Creates vertical line at HTF bar boundary.
• atStart: True=start of HTF bar, False=end
Returns: SyncedLine or na
syncedLabel(tracker, htfOffset, price, labelText, anchorPoint, ...)
Creates label at correct HTF-aligned position.
• anchorPoint: "start", "end", or "middle"
Returns: SyncedLabel or na
syncedPlotValue(tracker, value, htfOffset)
Returns value for plotting only at synced positions.
Returns: value if current bar is within HTF range, otherwise na
━━ UPDATE FUNCTIONS ━━
updateSyncedBox(syncedBox, extendToCurrentBar)
Extends existing box's right edge to current bar.
Returns: Updated SyncedBox
updateSyncedLine(syncedLine, extendToCurrentBar)
Extends existing horizontal line to current bar.
Returns: Updated SyncedLine
updateSyncedLabel(syncedLabel, tracker, newText, newPrice)
Updates label text/price while maintaining sync.
Returns: Updated SyncedLabel
━━ CONVENIENCE FUNCTIONS ━━
htfBarStartIndex(htfTimeframe, htfOffset, historyDepth)
Simple function to get HTF bar start without explicit tracker.
⚠️ Only tracks ONE timeframe. For multiple TFs, use createTracker pattern.
Returns: bar_index or na
htfBarEndIndex(htfTimeframe, htfOffset, historyDepth)
Simple function to get HTF bar end without explicit tracker.
⚠️ Only tracks ONE timeframe. For multiple TFs, use createTracker pattern.
Returns: bar_index or na
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
COMPLETE USAGE EXAMPLES
Example 1: FVG Box with Auto-Extend
```
//@version=6
indicator("FVG with Synced Drawing", overlay=true)
import ArunaReborn/TimeframeAlign/1 as tfa
htfInput = input.timeframe("60", "HTF for FVG")
// Create tracker for chosen timeframe
var tfa.HTFTracker fvgTracker = tfa.createTracker(htfInput)
tfa.updateTracker(fvgTracker, htfInput)
// Get FVG data from HTF (confirmed bars with offset)
= request.security(syminfo.tickerid, htfInput,
[low , high , low > high ],
lookahead=barmerge.lookahead_off)
// Store managed box
var tfa.SyncedBox fvgBox = na
// Create synced box when FVG detected
if fvgDetected and tfa.htfBarChanged(fvgTracker)
fvgBox := tfa.syncedBox(fvgTracker, 3, 1, fvgTop, fvgBot,
color.new(color.green, 85), color.green, 1, "FVG", color.white, true)
// Extend box to current bar each tick
if not na(fvgBox)
tfa.updateSyncedBox(fvgBox, true)
```
Example 2: HTF Support/Resistance Lines
```
//@version=6
indicator("HTF S/R Lines", overlay=true)
import ArunaReborn/TimeframeAlign/1 as tfa
htfInput = input.timeframe("240", "HTF for S/R")
// Create and update tracker
var tfa.HTFTracker srTracker = tfa.createTracker(htfInput)
tfa.updateTracker(srTracker, htfInput)
// Get HTF high/low (confirmed with offset)
= request.security(syminfo.tickerid, htfInput,
[high , low ], lookahead=barmerge.lookahead_off)
// Track lines
var tfa.SyncedLine resistanceLine = na
var tfa.SyncedLine supportLine = na
// Create new lines when HTF bar changes
if tfa.htfBarChanged(srTracker)
resistanceLine := tfa.syncedHLine(srTracker, 1, htfHigh, color.red, line.style_solid, 2, true)
supportLine := tfa.syncedHLine(srTracker, 1, htfLow, color.green, line.style_solid, 2, true)
// Auto-extend lines each bar
if not na(resistanceLine)
tfa.updateSyncedLine(resistanceLine, true)
if not na(supportLine)
tfa.updateSyncedLine(supportLine, true)
```
Example 3: Multiple Timeframes
```
//@version=6
indicator("Multi-TF Boxes", overlay=true)
import ArunaReborn/TimeframeAlign/1 as tfa
// Create separate tracker for each timeframe
var tfa.HTFTracker tracker1H = tfa.createTracker("60")
var tfa.HTFTracker tracker4H = tfa.createTracker("240")
var tfa.HTFTracker trackerD = tfa.createTracker("1D")
// Update ALL trackers every bar (pass the same TF string)
tfa.updateTracker(tracker1H, "60")
tfa.updateTracker(tracker4H, "240")
tfa.updateTracker(trackerD, "1D")
// Now use each tracker independently for drawing
// Each tracker maintains its own separate boundary history
```
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
NON-REPAINTING COMPLIANCE
To ensure non-repainting behavior, always use this pattern with request.security:
```
= request.security(syminfo.tickerid, htfTimeframe,
[value1 , value2 ], // Use offset for confirmed data
lookahead=barmerge.lookahead_off) // Never use lookahead_on
```
The ` ` offset ensures you're using the previous completed HTF bar, not the current forming bar.
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
HISTORY DEPTH PARAMETER
The `historyDepth` parameter controls how many HTF bars are tracked:
• Default: 500 HTF bars
• Maximum: Limited by Pine Script's array constraints
• Higher values = more historical accuracy but more memory usage
• Lower values = less memory but may return `na` for older offsets
Adjust based on your needs:
```
tfa.updateTracker(tracker, 100) // Track 100 HTF bars (light)
tfa.updateTracker(tracker, 1000) // Track 1000 HTF bars (heavier)
```
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
IMPORTANT NOTES
1. One Tracker Per Timeframe : If you need multiple HTFs, create separate trackers for each. The convenience functions (htfBarStartIndex, htfBarEndIndex) only track one TF.
2. Update Every Bar : Always call updateTracker() unconditionally on every bar, not inside conditionals.
3. HTF Only : This library is designed for Higher Timeframe data. For LTF aggregation, use findBarAtTime() for time-based lookups.
4. Drawing Limits : Pine Script has limits on drawing objects. Use box.delete(), line.delete(), label.delete() to clean up old objects.
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
TROUBLESHOOTING
Q: My boxes/lines still appear at wrong positions
A: Make sure you're calling updateTracker() on every bar (not inside an if statement) and using the correct htfOffset values.
Q: Functions return na
A: The htfOffset might be larger than available history. Increase historyDepth or use a smaller offset.
Q: Multiple timeframes don't work correctly
A: Don't use the convenience functions for multiple TFs. Create separate HTFTracker instances with createTracker() for each timeframe.
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
CHANGELOG
v1 - Initial release
• HTFTracker pattern for reliable multi-TF tracking
• Synced drawing functions for boxes, lines, labels
• Update functions for extending drawings
• Convenience functions for simple single-TF use cases
Plan Limit TimerA Pine Script library that helps developers monitor script execution time against TradingView's plan-specific timeout limits. Displays a visual debug table with runtime metrics, percentage of limit consumed, and color-coded status warnings.
WHAT THIS LIBRARY DOES
TradingView enforces different script timeout limits based on subscription tier:
• Basic : 20 seconds
• Essential / Plus / Premium : 40 seconds
• Ultimate : 100 seconds
This library measures your script's total execution time and displays it relative to these limits, helping you optimize indicators for users on different plans.
THE DEBUG TABLE
When enabled, a table appears on your chart showing:
• Plan : The selected TradingView subscription tier
• Limit : Maximum allowed execution time for that plan
• Runtime : Measured script execution time
• Per Bar : Average time spent per bar
• Bars : Number of bars processed
• % Used : Percentage of timeout limit consumed (color-coded)
• Status : OK (green), WARNING (yellow), DANGER (orange), or EXCEEDED (red)
HOW IT WORKS
The library captures a timestamp at the start of your script using timenow, then calculates the elapsed time at the end. It compares this against the selected plan's timeout limit to determine percentage used and status.
Technical Note : Pine Script's timenow variable has approximately 1-second precision. Scripts that execute in under 1 second may display 0ms. This is a platform limitation, not a library issue. For detailed per-function profiling, use TradingView's built-in Pine Profiler (More → Profiler mode in the Editor).
EXPORTED FUNCTIONS
startTimer()
Call at the very beginning of your script. Returns a timestamp.
getStats(startTime, plan)
Calculates timing statistics. Returns a TimingStats object with all metrics.
showTimingTable(stats, plan, tablePosition, showOnlyOnLast)
Renders the debug table on the chart.
debugTiming(startTime, plan, tablePosition)
Convenience function combining getStats() and showTimingTable() in one call.
isApproachingLimit(stats, threshold)
Returns true if execution time has reached the specified percentage of the limit.
getRemainingMs(stats)
Returns milliseconds remaining before timeout.
formatSummary(stats)
Returns a compact single-line string for labels or tooltips.
addTimingLabel(stats, barIdx, price, labelStyle, textSize)
Creates a color-coded chart label displaying timing statistics. Useful for visual debugging without the full table. Returns the label object for further customization.
EXPORTED CONSTANTS
• LIMIT_BASIC = 20
• LIMIT_ESSENTIAL = 40
• LIMIT_PLUS = 40
• LIMIT_PREMIUM = 40
• LIMIT_ULTIMATE = 100
EXPORTED TYPE: TimingStats
Object containing:
• totalTimeMs (float): Total execution time in milliseconds
• timePerBarMs (float): Average time per bar
• barsTimed (int): Number of bars measured
• barsSkipped (int): Bars excluded from measurement
• planLimitMs (int): Plan timeout in milliseconds
• percentUsed (float): Percentage of limit consumed
• status (string): "OK", "WARNING", "DANGER", or "EXCEEDED"
HOW TO USE IN YOUR INDICATOR
//@version=6
indicator("My Indicator", overlay = true)
import YourUsername/PlanLimitTimer/1 as timer
// User selects their TradingView plan
planInput = input.string("basic", "Your Plan", options = )
// START TIMING - must be first
startTime = timer.startTimer()
// Your indicator calculations here
sma20 = ta.sma(close, 20)
rsi14 = ta.rsi(close, 14)
plot(sma20)
// END TIMING - must be last
timer.debugTiming(startTime, planInput)
ADVANCED USAGE EXAMPLE
//@version=6
indicator("Advanced Example", overlay = true)
import YourUsername/PlanLimitTimer/1 as timer
planInput = input.string("basic", "Plan", options = )
startTime = timer.startTimer()
// Your calculations...
sma = ta.sma(close, 200)
plot(sma)
// Get stats for programmatic use
stats = timer.getStats(startTime, planInput)
// Option 1: Use addTimingLabel for a quick visual indicator
if barstate.islast
timer.addTimingLabel(stats, bar_index, high)
// Option 2: Show custom warning label if approaching limit
if timer.isApproachingLimit(stats, 70.0) and barstate.islast
label.new(bar_index, low, "Warning: " + timer.formatSummary(stats),
color = color.orange, textcolor = color.white, style = label.style_label_up)
// Display the debug table
timer.showTimingTable(stats, planInput, position.bottom_right)
IMPORTANT LIMITATIONS
1. Precision : Timing precision is approximately 1 second due to timenow behavior. Fast scripts show 0ms.
2. Variability : Results vary based on TradingView server load. The same script may show different times across runs.
3. Total Time Only : This library measures total script execution time, not individual function timing. For per-function analysis, use the Pine Profiler in the Editor.
4. Historical Bars : On historical bars, timenow reflects when the script loaded, not individual bar processing times.
USE CASES
• Optimization Debugging : See how close your script is to timeout limits
• Multi-Plan Support : Help users select appropriate settings for their subscription tier
• Performance Regression : Detect when changes increase execution time
• Documentation : Show users the performance characteristics of your indicator
News2026H2Library "News2026H2" - 2026 News Events Support Lib
f_loadNewsRows()
f_loadExcSevByTypeId()
f_loadExcTagByTypeId()
f_loadExcDelayAfterNewsMins()
Dhan_libLibrary "Dhan_lib"
Overview
Dhan_lib is a Pine Script v6 library designed to help traders automate trading orders via TradingView alerts and webhook integration with the Dhan broker API.
This library generates JSON-formatted alert messages for the following instruments.
Equity (Intraday and Delivery)
Options (CE and PE Buy and Sell)
Futures (Buy and Sell)
These alert strings can be directly used inside TradingView alerts to place live orders through an external webhook setup.
🔹 Supported Instruments
Equity
Intraday Buy and Sell
Delivery Buy and Sell
Options
Call (CE) Buy and Sell
Put (PE) Buy and Sell
ATM, ITM, and OTM strike selection
Intraday and Carry Forward
Futures
Buy and Sell
Intraday and Carry Forward
🔹 Key Features
✅ Pine Script v6 compatible
✅ Clean and reusable library functions
✅ Automatic ATM, ITM, and OTM strike calculation
✅ Expiry date handled via string format YYYY-MM-DD
✅ Fully webhook-ready JSON alert structure
✅ Supports multi-leg order format
✅ Designed for TradingView to Dhan automation
🔹 How to Use
Import the library in your strategy or indicator.
import Shivam_Mandrai/Dhan_lib/1
Call the required function.
order_msg = buy_CE_option("YOUR_SECRET_KEY", "NIFTY", 1)
Use the returned string as the alert message.
alert(order_msg, alert.freq_once_per_bar)
Connect TradingView alerts to your Dhan webhook receiver.
---
🔹 Important Notes
Strike prices are calculated dynamically based on the current chart price (close).
Futures symbols use TradingView continuous contract format such as NIFTY1!.
Quantity refers to the number of lots, not the lot size.
Expiry date must be provided in YYYY-MM-DD format.
⚠️ DISCLAIMER (PLEASE READ CAREFULLY)
This library is provided strictly for educational and automation purposes only.
I am not a SEBI-registered advisor.
I do not guarantee any profit or accuracy of orders.
I am not responsible for any financial loss, missed trades, execution errors, or broker-side issues.
Trading in stocks, options, and futures involves significant risk.
Automated trading can fail due to internet issues, broker API downtime, incorrect webhook configuration, slippage, or market volatility.
👉 Use this library entirely at your own risk.
👉 Always test thoroughly using paper trading or simulation before deploying with real capital.
If you want, I can also:
* Shrink this further for TradingView character limits
* Convert it into a single-paragraph version
* Localize it for Indian retail traders
buy_stock_intraday(secret_key, symbol, qty, exchange)
to buy the stock Intraday
Parameters:
secret_key (string) : string Secret Key of the Dhan Account eg-> "S1HgS".
symbol (string) : string Stock symbol eg-> "TATASTEEL".
qty (int) : int quantity for the order eg-> 1.
exchange (string) : string Trading Exchange eg-> "NSE".
Returns: order string.
sell_stock_intraday(secret_key, symbol, qty, exchange)
to sell the stock Intraday
Parameters:
secret_key (string) : string Secret Key of the Dhan Account eg-> "S1HgS".
symbol (string) : string Stock symbol eg-> "TATASTEEL".
qty (int) : int quantity for the order eg-> 1.
exchange (string) : string Trading Exchange eg-> "NSE".
Returns: order string.
buy_stock_delivery(secret_key, symbol, qty, exchange)
to buy the stock delivery
Parameters:
secret_key (string) : string Secret Key of the Dhan Account eg-> "S1HgS".
symbol (string) : string Stock symbol eg-> "TATASTEEL".
qty (int) : int quantity for the order eg-> 1.
exchange (string) : string Trading Exchange eg-> "NSE".
Returns: order string.
sell_stock_delivery(secret_key, symbol, qty, exchange)
to sell the stock delivery
Parameters:
secret_key (string) : string Secret Key of the Dhan Account eg-> "S1HgS".
symbol (string) : string Stock symbol eg-> "TATASTEEL".
qty (int) : int quantity for the order eg-> 1.
exchange (string) : string Trading Exchange eg-> "NSE".
Returns: order string.
buy_CE_option(secret_key, symbol, lots, expiry_date, intraday, strike_price_base, ITM_points, OTM_points, exchange)
to buy CE option
Parameters:
secret_key (string) : string Secret Key of the Dhan Account eg-> "S1HgS".
symbol (string) : string Index / Stock symbol eg-> "NIFTY", "BANKNIFTY".
lots (int) : int Number of lots eg-> 1.
expiry_date (string) : string Option expiry date in YYYY-MM-DD format eg-> "2026-01-20".
intraday (bool) : bool Set true for intraday order, set false for delivery order eg-> true.
strike_price_base (float) : float Strike price step size eg-> 50, 100 (default is 100).
ITM_points (float) : float Points below CMP to select ITM strike eg-> 100 (default is 0).
OTM_points (float) : float Points above CMP to select OTM strike eg-> 100 (default is 0).
exchange (string) : string Trading Exchange eg-> "NSE" (default is NSE).
Returns: order string.
buy_PE_option(secret_key, symbol, lots, expiry_date, intraday, strike_price_base, ITM_points, OTM_points, exchange)
to buy PE option
Parameters:
secret_key (string) : string Secret Key of the Dhan Account eg-> "S1HgS".
symbol (string) : string Index / Stock symbol eg-> "NIFTY", "BANKNIFTY".
lots (int) : int Number of lots eg-> 1.
expiry_date (string) : string Option expiry date in YYYY-MM-DD format eg-> "2026-01-20".
intraday (bool) : bool Set true for intraday order, set false for delivery order eg-> true.
strike_price_base (float) : float Strike price step size eg-> 50, 100 (default is 100).
ITM_points (float) : float Points below CMP to select ITM strike eg-> 100 (default is 0).
OTM_points (float) : float Points above CMP to select OTM strike eg-> 100 (default is 0).
exchange (string) : string Trading Exchange eg-> "NSE" (default is NSE).
Returns: order string.
sell_CE_option(secret_key, symbol, lots, expiry_date, intraday, strike_price_base, ITM_points, OTM_points, exchange)
to Sell CE option
Parameters:
secret_key (string) : string Secret Key of the Dhan Account eg-> "S1HgS".
symbol (string) : string Index / Stock symbol eg-> "NIFTY", "BANKNIFTY".
lots (int) : int Number of lots eg-> 1.
expiry_date (string) : string Option expiry date in YYYY-MM-DD format eg-> "2026-01-20".
intraday (bool) : bool Set true for intraday order, set false for delivery order eg-> true.
strike_price_base (float) : float Strike price step size eg-> 50, 100 (default is 100).
ITM_points (float) : float Points below CMP to select ITM strike eg-> 100 (default is 0).
OTM_points (float) : float Points above CMP to select OTM strike eg-> 100 (default is 0).
exchange (string) : string Trading Exchange eg-> "NSE" (default is NSE).
Returns: order string.
sell_PE_option(secret_key, symbol, lots, expiry_date, intraday, strike_price_base, ITM_points, OTM_points, exchange)
to sell PE option
Parameters:
secret_key (string) : string Secret Key of the Dhan Account eg-> "S1HgS".
symbol (string) : string Index / Stock symbol eg-> "NIFTY", "BANKNIFTY".
lots (int) : int Number of lots eg-> 1.
expiry_date (string) : string Option expiry date in YYYY-MM-DD format eg-> "2026-01-20".
intraday (bool) : bool Set true for intraday order, set false for delivery order eg-> true.
strike_price_base (float) : float Strike price step size eg-> 50, 100 (default is 100).
ITM_points (float) : float Points below CMP to select ITM strike eg-> 100 (default is 0).
OTM_points (float) : float Points above CMP to select OTM strike eg-> 100 (default is 0).
exchange (string) : string Trading Exchange eg-> "NSE" (default is NSE).
Returns: order string.
buy_future(secret_key, symbol, lot, intraday, exchange)
to buy the Future
Parameters:
secret_key (string) : string Secret Key of the Dhan Account eg-> "S1HgS".
symbol (string) : string Stock symbol eg-> "NIFTY".
lot (int) : int quantity for the order eg-> 1.
intraday (bool) : bool Set true for intraday order, set false for delivery order eg-> true.
exchange (string) : string Trading Exchange eg-> "NSE".
Returns: order string.
sell_future(secret_key, symbol, lot, intraday, exchange)
to sell the Future
Parameters:
secret_key (string) : string Secret Key of the Dhan Account eg-> "S1HgS".
symbol (string) : string Stock symbol eg-> "NIFTY".
lot (int) : int quantity for the order eg-> 1.
intraday (bool) : bool Set true for intraday order, set false for delivery order eg-> true.
exchange (string) : string Trading Exchange eg-> "NSE".
Returns: order string.
RVOL_Core_NSELibrary "RVOL_Core_NSE"
f_rvol(lookbackDays, isNewDay, msSinceSessionStart, volume)
Parameters:
lookbackDays (int)
isNewDay (bool)
msSinceSessionStart (int)
volume (float)
T5_TradeEngineLibrary "T5_TradeEngine"
tick(close_, high_, low_, ema21, ema50, ema200, atrPct, emaGapPct, btcEma50, btcEma200, btcFilterEffective, isBarClose, crossUp21_50, crossDown21_50, allowEntries, exitOnOppositeCross, feeBps, useSR_TPSL, srLeft, srRight, srLookbackPivots, srBufferPct, srMinDistPct, srMinNetAfterFeesPct, srFallbackToATR, tp1CapPct, slCapPct, useTP2Trail, trailExitOnCloseOnly, tp2CapPct, trailCapPct, holdBars)
Parameters:
close_ (float)
high_ (float)
low_ (float)
ema21 (float)
ema50 (float)
ema200 (float)
atrPct (float)
emaGapPct (float)
btcEma50 (float)
btcEma200 (float)
btcFilterEffective (bool)
isBarClose (bool)
crossUp21_50 (bool)
crossDown21_50 (bool)
allowEntries (bool)
exitOnOppositeCross (bool)
feeBps (float)
useSR_TPSL (bool)
srLeft (int)
srRight (int)
srLookbackPivots (int)
srBufferPct (float)
srMinDistPct (float)
srMinNetAfterFeesPct (float)
srFallbackToATR (bool)
tp1CapPct (float)
slCapPct (float)
useTP2Trail (bool)
trailExitOnCloseOnly (bool)
tp2CapPct (float)
trailCapPct (float)
holdBars (int)






















