forward(pi, a, b, obs) Computes forward probabilities for state `X` up to observation at time `k`, is defined as the probability of observing sequence of observations `e_1 ... e_k` and that the state at time `k` is `X`. Parameters: pi (float[]): Initial probabilities. a (matrix<float>): Transmissions, hidden transition matrix a or alpha = transition probability matrix of changing states given a state matrix is size (M x M) where M is number of states. b (matrix<float>): Emissions, matrix of observation probabilities b or beta = observation probabilities. Given state matrix is size (M x O) where M is number of states and O is number of different possible observations. obs (int[]): List with actual state observation data. Returns: - `matrix<float> _alpha`: Forward probabilities. The probabilities are given on a logarithmic scale (natural logarithm). The first dimension refers to the state and the second dimension to time.
forward(pi, a, b, obs, scaling) Computes forward probabilities for state `X` up to observation at time `k`, is defined as the probability of observing sequence of observations `e_1 ... e_k` and that the state at time `k` is `X`. Parameters: pi (float[]): Initial probabilities. a (matrix<float>): Transmissions, hidden transition matrix a or alpha = transition probability matrix of changing states given a state matrix is size (M x M) where M is number of states. b (matrix<float>): Emissions, matrix of observation probabilities b or beta = observation probabilities. Given state matrix is size (M x O) where M is number of states and O is number of different possible observations. obs (int[]): List with actual state observation data. scaling (bool): Normalize `alpha` scale. Returns: - #### Tuple with: > - `matrix<float> _alpha`: Forward probabilities. The probabilities are given on a logarithmic scale (natural logarithm). The first dimension refers to the state and the second dimension to time. > - `array<float> _c`: Array with normalization scale.
backward(a, b, obs) Computes backward probabilities for state `X` and observation at time `k`, is defined as the probability of observing the sequence of observations `e_k+1, ... , e_n` under the condition that the state at time `k` is `X`. Parameters: a (matrix<float>): Transmissions, hidden transition matrix a or alpha = transition probability matrix of changing states given a state matrix is size (M x M) where M is number of states b (matrix<float>): Emissions, matrix of observation probabilities b or beta = observation probabilities. given state matrix is size (M x O) where M is number of states and O is number of different possible observations obs (int[]): Array with actual state observation data. Returns: - `matrix<float> _beta`: Backward probabilities. The probabilities are given on a logarithmic scale (natural logarithm). The first dimension refers to the state and the second dimension to time.
backward(a, b, obs, c) Computes backward probabilities for state `X` and observation at time `k`, is defined as the probability of observing the sequence of observations `e_k+1, ... , e_n` under the condition that the state at time `k` is `X`. Parameters: a (matrix<float>): Transmissions, hidden transition matrix a or alpha = transition probability matrix of changing states given a state matrix is size (M x M) where M is number of states b (matrix<float>): Emissions, matrix of observation probabilities b or beta = observation probabilities. given state matrix is size (M x O) where M is number of states and O is number of different possible observations obs (int[]): Array with actual state observation data. c (float[]): Array with Normalization scaling coefficients. Returns: - `matrix<float> _beta`: Backward probabilities. The probabilities are given on a logarithmic scale (natural logarithm). The first dimension refers to the state and the second dimension to time.
baumwelch(observations, nstates) **(Random Initialization)** Baum–Welch algorithm is a special case of the expectation–maximization algorithm used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the forward-backward algorithm to compute the statistics for the expectation step. Parameters: observations (int[]): List of observed states. nstates (int) Returns: - #### Tuple with: > - `array<float> _pi`: Initial probability distribution. > - `matrix<float> _a`: Transition probability matrix. > - `matrix<float> _b`: Emission probability matrix. --- requires: `import RicardoSantos/WIPTensor/2 as Tensor`
baumwelch(observations, pi, a, b) Baum–Welch algorithm is a special case of the expectation–maximization algorithm used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the forward-backward algorithm to compute the statistics for the expectation step. Parameters: observations (int[]): List of observed states. pi (float[]): Initial probaility distribution. a (matrix<float>): Transmissions, hidden transition matrix a or alpha = transition probability matrix of changing states given a state matrix is size (M x M) where M is number of states b (matrix<float>): Emissions, matrix of observation probabilities b or beta = observation probabilities. given state matrix is size (M x O) where M is number of states and O is number of different possible observations Returns: - #### Tuple with: > - `array<float> _pi`: Initial probability distribution. > - `matrix<float> _a`: Transition probability matrix. > - `matrix<float> _b`: Emission probability matrix. --- requires: `import RicardoSantos/WIPTensor/2 as Tensor`
ملاحظات الأخبار
v2 minor update.
ملاحظات الأخبار
Fix logger version.
ملاحظات الأخبار
v4 - Added error checking for some errors.
ملاحظات الأخبار
v5 - Improved calculation by merging some of the loops, where possible.
كمثال للقيم التي تتبناها TradingView، نشر المؤلف شيفرة باين كمكتبة مفتوحة المصدر بحيث يمكن لمبرمجي باين الآخرين من مجتمعنا استخدامه بحرية. تحياتنا للمؤلف! يمكنك استخدام هذه المكتبة بشكل خاص أو في منشورات أخرى مفتوحة المصدر، ولكن إعادة استخدام هذا الرمز في المنشور تحكمه قوانين الموقع.
لا يُقصد بالمعلومات والمنشورات أن تكون، أو تشكل، أي نصيحة مالية أو استثمارية أو تجارية أو أنواع أخرى من النصائح أو التوصيات المقدمة أو المعتمدة من TradingView. اقرأ المزيد في شروط الاستخدام.