PINE LIBRARY
تم تحديثه MathComplexOperator

Library "MathComplexOperator"
A set of utility functions to handle complex numbers.
conjugate(complex_number) Computes the conjugate of complex_number by reversing the sign of the imaginary part.
Parameters:
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
add(complex_number_a, complex_number_b) Adds complex number complex_number_b to complex_number_a, in the form:
[_a.real + _b.real, _a.imaginary + _b.imaginary].
Parameters:
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
subtract(complex_number_a, complex_number_b) Subtract complex_number_b from complex_number_a, in the form:
[_a.real - _b.real, _a.imaginary - _b.imaginary].
Parameters:
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
multiply(complex_number_a, complex_number_b) Multiply complex_number_a with complex_number_b, in the form:
[(_a.real * _b.real) - (_a.imaginary * _b.imaginary), (_a.real * _b.imaginary) + (_a.imaginary * _b.real)]
Parameters:
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
divide(complex_number_a, complex_number_b) Divide complex_number _a with _b, in the form:
[(_a.real * _b.real) - (_a.imaginary * _b.imaginary), (_a.real * _b.imaginary) + (_a.imaginary * _b.real)]
Parameters:
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
reciprocal(complex_number) Computes the reciprocal or inverse of complex_number.
Parameters:
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
negative(complex_number) Negative of complex_number, in the form: [-_a.real, -_a.imaginary]
Parameters:
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
inverse(complex_number) Inverse of complex_number, in the form: [1/_a.real, 1/_a.imaginary]
Parameters:
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
exponential(complex_number) Exponential of complex_number.
Parameters:
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
ceil(complex_number, digits) Ceils complex_number.
Parameters:
Returns: _complex: pseudo complex number in the form of a array [real, imaginary]
radius(complex_number) Radius(magnitude) of complex_number, in the form: [sqrt(pow(complex_number))]
This is defined as its distance from the origin (0,0) of the complex plane.
Parameters:
Returns: float value with radius.
magnitude(complex_number) magnitude(absolute value) of complex_number, should be the same as the radius.
Parameters:
Returns: float.
magnitude_squared(complex_number) magnitude(absolute value) of complex_number, should be the same as the radius.
Parameters:
Returns: float.
sign(complex_number) Unity of complex numbers.
Parameters:
Returns: float array, complex number.
A set of utility functions to handle complex numbers.
conjugate(complex_number) Computes the conjugate of complex_number by reversing the sign of the imaginary part.
Parameters:
- complex_number: float array, pseudo complex number in the form of a array [real, imaginary].
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
add(complex_number_a, complex_number_b) Adds complex number complex_number_b to complex_number_a, in the form:
[_a.real + _b.real, _a.imaginary + _b.imaginary].
Parameters:
- complex_number_a: pseudo complex number in the form of a array [real, imaginary].
- complex_number_b: pseudo complex number in the form of a array [real, imaginary].
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
subtract(complex_number_a, complex_number_b) Subtract complex_number_b from complex_number_a, in the form:
[_a.real - _b.real, _a.imaginary - _b.imaginary].
Parameters:
- complex_number_a: float array, pseudo complex number in the form of a array [real, imaginary].
- complex_number_b: float array, pseudo complex number in the form of a array [real, imaginary].
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
multiply(complex_number_a, complex_number_b) Multiply complex_number_a with complex_number_b, in the form:
[(_a.real * _b.real) - (_a.imaginary * _b.imaginary), (_a.real * _b.imaginary) + (_a.imaginary * _b.real)]
Parameters:
- complex_number_a: float array, pseudo complex number in the form of a array [real, imaginary].
- complex_number_b: float array, pseudo complex number in the form of a array [real, imaginary].
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
divide(complex_number_a, complex_number_b) Divide complex_number _a with _b, in the form:
[(_a.real * _b.real) - (_a.imaginary * _b.imaginary), (_a.real * _b.imaginary) + (_a.imaginary * _b.real)]
Parameters:
- complex_number_a: float array, pseudo complex number in the form of a array [real, imaginary].
- complex_number_b: float array, pseudo complex number in the form of a array [real, imaginary].
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
reciprocal(complex_number) Computes the reciprocal or inverse of complex_number.
Parameters:
- complex_number: float array, pseudo complex number in the form of a array [real, imaginary].
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
negative(complex_number) Negative of complex_number, in the form: [-_a.real, -_a.imaginary]
Parameters:
- complex_number: float array, pseudo complex number in the form of a array [real, imaginary].
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
inverse(complex_number) Inverse of complex_number, in the form: [1/_a.real, 1/_a.imaginary]
Parameters:
- complex_number: float array, pseudo complex number in the form of a array [real, imaginary].
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
exponential(complex_number) Exponential of complex_number.
Parameters:
- complex_number: pseudo complex number in the form of a array [real, imaginary].
Returns: float array, pseudo complex number in the form of a array [real, imaginary]
ceil(complex_number, digits) Ceils complex_number.
Parameters:
- complex_number: float array, pseudo complex number in the form of a array [real, imaginary].
- digits: int, digits to use as ceiling.
Returns: _complex: pseudo complex number in the form of a array [real, imaginary]
radius(complex_number) Radius(magnitude) of complex_number, in the form: [sqrt(pow(complex_number))]
This is defined as its distance from the origin (0,0) of the complex plane.
Parameters:
- complex_number: float array, pseudo complex number in the form of a array [real, imaginary].
Returns: float value with radius.
magnitude(complex_number) magnitude(absolute value) of complex_number, should be the same as the radius.
Parameters:
- complex_number: float array, pseudo complex number in the form of a array [real, imaginary].
Returns: float.
magnitude_squared(complex_number) magnitude(absolute value) of complex_number, should be the same as the radius.
Parameters:
- complex_number: float array, pseudo complex number in the form of a array [real, imaginary].
Returns: float.
sign(complex_number) Unity of complex numbers.
Parameters:
- complex_number: float array, pseudo complex number in the form of a array [real, imaginary].
Returns: float array, complex number.
ملاحظات الأخبار
v2 update to type and method.Updated:
conjugate(this)
Computes the conjugate of complex number by reversing the sign of the imaginary part.
Parameters:
this: complex.
Returns: Complex.
add(this, other)
Adds complex number other to this, in the form:
[_a.real + _b.real, _a.imaginary + _b.imaginary].
Parameters:
this: pseudo complex number in the form of a array [real, imaginary].
other: pseudo complex number in the form of a array [real, imaginary].
Returns: complex
subtract(this, other)
Subtract other from this, in the form:
[_a.real - _b.real, _a.imaginary - _b.imaginary].
Parameters:
this: complex.
other: complex.
Returns: complex
multiply(this, other)
Multiply this with other, in the form:
[(_a.real * _b.real) - (_a.imaginary * _b.imaginary), (_a.real * _b.imaginary) + (_a.imaginary * _b.real)]
Parameters:
this: complex.
other: complex.
Returns: complex
divide(this, other)
Divide complex_number _a with _b, in the form:
[(_a.real * _b.real) - (_a.imaginary * _b.imaginary), (_a.real * _b.imaginary) + (_a.imaginary * _b.real)]
Parameters:
this: complex.
other: complex.
Returns: complex
reciprocal(this)
Computes the reciprocal or inverse of complex_number.
Parameters:
this
Returns: complex
negative(this)
Negative of complex_number, in the form: [-_a.real, -_a.imaginary]
Parameters:
this
Returns: complex
inverse(this)
Inverse of complex_number, in the form: [1/_a.real, 1/_a.imaginary]
Parameters:
this
Returns: complex
exponential(this)
Exponential of complex_number.
Parameters:
this
Returns: complex
ceil(this, digits)
Ceils complex_number.
Parameters:
this
digits: int, digits to use as ceiling.
Returns: _complex: pseudo complex number in the form of a array [real, imaginary]
radius(this)
Radius(magnitude) of complex_number, in the form: [sqrt(pow(complex_number))]
This is defined as its distance from the origin (0,0) of the complex plane.
Parameters:
this
Returns: float value with radius.
magnitude(this)
magnitude(absolute value) of complex_number, should be the same as the radius.
Parameters:
this
Returns: float.
magnitude_squared(this)
magnitude(absolute value) of complex_number, should be the same as the radius.
Parameters:
this
Returns: float.
sign(this)
Unity of complex numbers.
Parameters:
this
Returns: float array, complex number.
ملاحظات الأخبار
v3 minor update.مكتبة باين
كمثال للقيم التي تتبناها TradingView، نشر المؤلف شيفرة باين كمكتبة مفتوحة المصدر بحيث يمكن لمبرمجي باين الآخرين من مجتمعنا استخدامه بحرية. تحياتنا للمؤلف! يمكنك استخدام هذه المكتبة بشكل خاص أو في منشورات أخرى مفتوحة المصدر، ولكن إعادة استخدام هذا الرمز في المنشورات تخضع لقواعد الموقع.
إخلاء المسؤولية
لا يُقصد بالمعلومات والمنشورات أن تكون، أو تشكل، أي نصيحة مالية أو استثمارية أو تجارية أو أنواع أخرى من النصائح أو التوصيات المقدمة أو المعتمدة من TradingView. اقرأ المزيد في شروط الاستخدام.
مكتبة باين
كمثال للقيم التي تتبناها TradingView، نشر المؤلف شيفرة باين كمكتبة مفتوحة المصدر بحيث يمكن لمبرمجي باين الآخرين من مجتمعنا استخدامه بحرية. تحياتنا للمؤلف! يمكنك استخدام هذه المكتبة بشكل خاص أو في منشورات أخرى مفتوحة المصدر، ولكن إعادة استخدام هذا الرمز في المنشورات تخضع لقواعد الموقع.
إخلاء المسؤولية
لا يُقصد بالمعلومات والمنشورات أن تكون، أو تشكل، أي نصيحة مالية أو استثمارية أو تجارية أو أنواع أخرى من النصائح أو التوصيات المقدمة أو المعتمدة من TradingView. اقرأ المزيد في شروط الاستخدام.