This is an alternative way to do bandpass filtering. I Still need to update it to support moveable frequency bands. The lowBandpass() is just a 'trick,' as it simply subtracts the highBandpass() from the close data, so it is not really accurate in that it removes the low frequencies, just in a rather less-than-ideal manner.

The "spectrum" of the dataset to filter will always be from 0 to 100, so think of filter boundary as %. So, a boundary of 40% means: 40% of the low-frequencies have been removed from the original data to make the red graph, and 40% of the high-frequencies have been removed from the original data to make the green graph.

This came about after reading the excellent tutorial on signal processing in Pine Script (pinecoders.com/techniques/dsp/), as the techniques listed there did not do exactly what I was looking for.

Here is a low-pass graph

لقطة

Here is a hi-pass graph

لقطة
bandpassfilterfilterOscillatorsVolatility

نص برمجي مفتوح المصدر

قام مؤلف هذا النص البرمجي بنشره وجعله مفتوح المصدر، بحيث يمكن للمتداولين فهمه والتحقق منه، وهو الأمر الذي يدخل ضمن قيم TradingView. تحياتنا للمؤلف! يمكنك استخدامه مجانًا، ولكن إعادة استخدام هذا الرمز في المنشور يخضع لقواعد‎‎قوانين الموقع. يمكنك جعله مفضلاً لاستخدامه على الرسم البياني.

هل تريد استخدام هذا النص البرمجي على الرسم البياني؟


يعمل أيضًا:

إخلاء المسؤولية