regressionsLibrary   "regressions" 
This library computes least square regression models for polynomials of any form for a given data set of x and y values.
 fit(X, y, reg_type, degrees) 
  Takes a list of X and y values and the degrees of the polynomial and returns a least square regression for the given polynomial on the dataset.
  Parameters:
     X (array) : (float )    X inputs for regression fit.
     y (array) : (float ) 	 y outputs for regression fit.
     reg_type (string) : (string)	 The type of regression. If passing value for degrees use reg.type_custom
     degrees (array) : (int )      The degrees of the polynomial which will be fit to the data. ex: passing array.from(0, 3) would be a polynomial of form c1x^0 + c2x^3 where c2 and c1 will be coefficients of the best fitting polynomial.
  Returns: (regression) returns a regression with the best fitting coefficients for the selecected polynomial
 regress(reg, x) 
  Regress one x input.
  Parameters:
     reg (regression) : (regression) The fitted regression which the y_pred will be calulated with.
     x (float) : (float)      The input value cooresponding to the y_pred.
  Returns: (float)		 The best fit y value for the given x input and regression.
 predict(reg, X) 
  Predict a new set of X values with a fitted regression. -1 is one bar ahead of the realtime
  Parameters:
     reg (regression) : (regression) 		The fitted regression which the y_pred will be calulated with.
     X (array) 
  Returns: (float )		 	The best fit y values for the given x input and regression.
 generate_points(reg, x, y, left_index, right_index) 
  Takes a regression object and creates chart points which can be used for plotting visuals like lines and labels.
  Parameters:
     reg (regression) : (regression)    Regression which has been fitted to a data set.
     x (array) : (float )		x values which coorispond to passed y values
     y (array) : (float )		y values which coorispond to passed x values
     left_index (int) : (int)      		The offset of the bar farthest to the realtime bar should be larger than left_index value.
     right_index (int) : (int)      		The offset of the bar closest to the realtime bar should be less than right_index value.
  Returns: (chart.point )	 Returns an array of chart points
 plot_reg(reg, x, y, left_index, right_index, curved, close, line_color, line_width) 
  Simple plotting function for regression	for more custom plotting use generate_points() to create points then create your own plotting function.
  Parameters:
     reg (regression) : (regression) 	Regression which has been fitted to a data set.
     x (array) 
     y (array) 
     left_index (int) : (int)      		The offset of the bar farthest to the realtime bar should be larger than left_index value.
     right_index (int) : (int)      		The offset of the bar closest to the realtime bar should be less than right_index value.
     curved (bool) : (bool)  		If the polyline is curved or not.
     close (bool) : (bool)  		If true the polyline will be closed.
     line_color (color) : (color) 		The color of the line.
     line_width (int) : (int) 			The width of the line.
  Returns: (polyline)      The polyline for the regression.
 series_to_list(src, left_index, right_index) 
  Convert a series to a list. Creates a list of all the cooresponding source values
from left_index to right_index. This should be called at the highest scope for consistency.
  Parameters:
     src (float) : (float ) 	The source the list will be comprised of.
     left_index (int) : (float )   The left most bar (farthest back historical bar) which the cooresponding source value will be taken for.
     right_index (int) : (float )   The right most bar closest to the realtime bar which the cooresponding source value will be taken for.
  Returns: (float )  	An array of size left_index-right_index
 range_list(start, stop, step) 
  Creates an from the start value to the stop value.
  Parameters:
     start (int) : (float ) 	The true y values.
     stop (int) : (float )   The predicted y values.
     step (int) : (int)   	Positive integer. The spacing between the values. ex: start=1, stop=6, step=2:  
  Returns: (float )  	An array of size stop-start
 regression 
  Fields:
     coeffs (array__float) 
     degrees (array__float) 
     type_linear (series__string) 
     type_quadratic (series__string) 
     type_cubic (series__string) 
     type_custom (series__string) 
     _squared_error (series__float) 
     X (array__float)
