Slope_TKLibrary "Slope_TK"
This library calculate the slope of a serie between two points
The serie can be ta.ema(close,200) for example
The size is the number of bars between the two points for the slope calculation, for example it can be 10
slope_of_ema200 = slope(t a.eam(close, 200) , 10 )
slope( float serie, int size )
MATH
String_Encoder_DecoderLibrary "String_Encoder_Decoder"
String encoder and decoder to use in internal data tranfer in script calculations.
In example, script encode 125 values once and then decode them every candle.
encode(array or values (val1,val2,val3,val4,val5,val6)
encode: encode some values into string
Parameters:
array : of values or values1, value2 (up to 6 values)
(input values must be stringified)
Returns: encoded value
decode(val)
decode: decode into string
Parameters:
val : value to decode, must be stringified
Returns: decoded array of stringified values
fast_utilsLibrary "fast_utils"
This library contains my favourite functions. Will be updated frequently
count_int_digits()
Count int digits in number
Returns: : number of int digits in number
count_float_digits()
Count float digits in number
Returns: : number of float digits in number
stringify()
Convert values in array or matrix into string values
Returns: : array or matrix of string values
arrcompare()
Compare values in arrays
Returns: : bool value
arrdedup()
Remove duplicate values in array
Returns: : array without duplicates
ResInMins()
Converts current resolution in minutes
Returns: : return float number of minuted
MultOfRes(res, mult)
Convert current float TF in minutes to target string TF in "timeframe.period" format.
Parameters:
res : : current resolution in minutes
mult : : Multiple of current TF to be calculated.
Returns: : timeframe format string
fractionLibrary "fraction"
Fraction Creation and Basic Operations.
Cracked a tough problem in making this Polarity Agnostic Decimal without a cheating "abs * sign of input".
it's quite fast, however still test for errors before production use.
>> Big Neon Sign on 1/0 value. <<
Int Array (LOC 0/1)..
To/From Decimal(float)
Comparison ( < / == / >)
Add / Sub / Mult / Div
Invert polarity +/-
String output with 2 formats ..
make(_numerator, _denominator, _val)
Parameters:
_numerator : (int) above the line integer ie: ____ of (___ / bottom )
_denominator : (int) below the line integer ie: ____ of (top / ______ )
_val : (int) OPTIONAL (for no real reason including it) integer to multiply
Returns: array where index 0 is Numerator, 1 is Denominator
add(_fraction, _fraction2)
Perform add operation (left adds right onto )
Parameters:
_fraction : (array) left side Fraction Object
_fraction2 : (array) right side Fraction Object
Returns: array where index 0 is Numerator, 1 is Denominator
subtract(_fraction, _fraction2)
Perform subtract operation (left subtracts right from )
Parameters:
_fraction : (array) left side Fraction Object
_fraction2 : (array) right side Fraction Object
Returns: array where index 0 is Numerator, 1 is Denominator
multiply(_fraction, _fraction2)
Perform multiply operation (left multiplies by right )
Parameters:
_fraction : (array) left side Fraction Object
_fraction2 : (array) right side Fraction Object
Returns: array where index 0 is Numerator, 1 is Denominator
divide(_fraction, _fraction2)
Perform divide operation (left divides by right )
Parameters:
_fraction : (array) left side Fraction Object
_fraction2 : (array) right side Fraction Object
Returns: array where index 0 is Numerator, 1 is Denominator
negative(_fraction)
Perform Negative number inversion ie: (-1/2 => 1/2) or (3/5 => -3/5)
Parameters:
_fraction : (array) Fraction Object to invert to/from negative
Returns: array where index 0 is Numerator, 1 is Denominator
isSmaller(_fraction, _fraction2)
Check if first fraction is smaller
Parameters:
_fraction : (array) left side Fraction Object
_fraction2 : (array) right side Fraction Object
Returns: True if smaller, false if bigger
isLarger(_fraction, _fraction2)
Check if first fraction is larger
Parameters:
_fraction : (array) left side Fraction Object
_fraction2 : (array) right side Fraction Object
Returns: True if smaller, false if bigger
isEqual(_fraction, _fraction2)
Check if first fraction is equal
Parameters:
_fraction : (array) left side Fraction Object
_fraction2 : (array) right side Fraction Object
Returns: True if smaller, false if bigger
fromDec(_input, _epsilon, _iterations)
Convert Decimal to Fraction array
note : this is my own Negative Number Capable (tiny speed loss)
adaptation of the fastest algo out there
Exclusive for Tradingview.
Parameters:
_input : (float) Decimal Input
_epsilon : (int) (OPTIONAL) to precision 0's after dec 0.0000 -> epsilon 0's
_iterations : (int) (OPTIONAL) Maximum iterations Till give up
Returns: array where index 0 is Numerator, 1 is Denominator
toDec()
Convert Fraction to Decimal Output
Returns: Float of fration
toString(_fraction)
Create "A/B" or "A and B/C" String Value of Fraction.
Parameters:
_fraction : (array) Fraction Object to invert to/from negative
Returns: String as (-)? A and B/C format
Encoder DecoderLibrary "EncoderDecoder"
Simple example how to encode some values into float number and then decode it back to original values
f_calctype()
Encode parameter
Returns: encoded value
f_calctype()
Decode parameter
Returns: decoded value
f_srctype()
Encode parameter
Returns: encoded value
f_srctype()
Decode parameter
Returns: decoded value
f_encode(calc_type, src_type, tf, length)
Encodes 4 paramters into float number
Parameters:
calc_type : 1st paramter to encode (its values defined in f_calctype functions) max number of values that can be encoded = 100
src_type : 2nd paramter to encode (its values defined in f_src_type functions) max number of values that can be encoded = 100
tf : 3rd paramter to encode (may be int number with format.price precision length!)
length : 4th paramter to encode (may be any int number)
Returns: float number
f_decode()
Decodes 4 paramters into tuple
Returns: tuple
kNNLibrary "kNN"
Collection of experimental kNN functions. This is a work in progress, an improvement upon my original kNN script:
The script can be recreated with this library. Unlike the original script, that used multiple arrays, this has been reworked with the new Pine Script matrix features.
To make a kNN prediction, the following data should be supplied to the wrapper:
kNN : filter type. Right now either Binary or Percent . Binary works like in the original script: the system stores whether the price has increased (+1) or decreased (-1) since the previous knnStore event (called when either long or short condition is supplied). Percent works the same, but the values stored are the difference of prices in percents. That way larger differences in prices would give higher scores.
k : number k. This is how many nearest neighbors are to be selected (and summed up to get the result).
skew : kNN minimum difference. Normally, the prediction is done with a simple majority of the neighbor votes. If skew is given, then more than a simple majority is needed for a prediction. This also means that there are inputs for which no prediction would be given (if the majority votes are between -skew and +skew). Note that in Percent mode more profitable trades will have higher voting power.
depth : kNN matrix size limit. Originally, the whole available history of trades was used to make a prediction. This not only requires more computational power, but also neglects the fact that the market conditions are changing. This setting restricts the memory matrix to a finite number of past trades.
price : price series
long : long condition. True if the long conditions are met, but filters are not yet applied. For example, in my original script, trades are only made on crossings of fast and slow MAs. So, whenever it is possible to go long, this value is set true. False otherwise.
short : short condition. Same as long , but for short condition.
store : whether the inputs should be stored. Additional filters may be applied to prevent bad trades (for example, trend-based filters), so if you only need to consult kNN without storing the trade, this should be set to false.
feature1 : current value of feature 1. A feature in this case is some kind of data derived from the price. Different features may be used to analyse the price series. For example, oscillator values. Not all of them may be used for kNN prediction. As the current kNN implementation is 2-dimensional, only two features can be used.
feature2 : current value of feature 2.
The wrapper returns a tuple: [ longOK, shortOK ]. This is a pair of filters. When longOK is true, then kNN predicts a long trade may be taken. When shortOK is true, then kNN predicts a short trade may be taken. The kNN filters are returned whenever long or short conditions are met. The trade is supposed to happen when long or short conditions are met and when the kNN filter for the desired direction is true.
Exported functions :
knnStore(knn, p1, p2, src, maxrows)
Store the previous trade; buffer the current one until results are in. Results are binary: up/down
Parameters:
knn : knn matrix
p1 : feature 1 value
p2 : feature 2 value
src : current price
maxrows : limit the matrix size to this number of rows (0 of no limit)
Returns: modified knn matrix
knnStorePercent(knn, p1, p2, src, maxrows)
Store the previous trade; buffer the current one until results are in. Results are in percents
Parameters:
knn : knn matrix
p1 : feature 1 value
p2 : feature 2 value
src : current price
maxrows : limit the matrix size to this number of rows (0 of no limit)
Returns: modified knn matrix
knnGet(distance, result)
Get neighbours by getting k results with the smallest distances
Parameters:
distance : distance array
result : result array
Returns: array slice of k results
knnDistance(knn, p1, p2)
Create a distance array from the two given parameters
Parameters:
knn : knn matrix
p1 : feature 1 value
p2 : feature 2 value
Returns: distance array
knnSum(knn, p1, p2, k)
Make a prediction, finding k nearest neighbours and summing them up
Parameters:
knn : knn matrix
p1 : feature 1 value
p2 : feature 2 value
k : sum k nearest neighbors
Returns: sum of k nearest neighbors
doKNN(kNN, k, skew, depth, price, long, short, store, feature1, feature2)
execute kNN filter
Parameters:
kNN : filter type
k : number k
skew : kNN minimum difference
depth : kNN matrix size limit
price : series
long : long condition
short : short condition
store : store the supplied features (if false, only checks the results without storage)
feature1 : feature 1 value
feature2 : feature 2 value
Returns: filter output
fibo_levelsLibrary "Fibo_levels"
Calculate Fibo levels from any 2 levels. Your need know only 2 price of 2 levels for calculate any level of Fibo: function 'fibo_lvl',
or calculate array of price Fibo levels : function 'fibo_lvls'
fibo_lvl(fibo_lvl1, price1, fibo_lvl2, price2, calc_level)
Parameters:
fibo_lvl1 : First of any level of fibo from 0 to 1 (example 0.236)
price1 : Price for 1th any level (example 2356.1)
fibo_lvl2 : Second of any level of fibo from 0 to 1 (example 0.382)
price2 : Price for 2th any level (example 2497.4)
calc_level : Price for level to calculate (example 0.5)
Returns: return price for calc_level fibo
fibo_lvls(bars, time1, time2, fibo_lvl1, price1, fibo_lvl2, price1)
Parameters:
fibo_lvl1 : First of any level of fibo from 0 to 1 (example 0.236)
price1 : Price for 1th any level (example 2356.1)
fibo_lvl2 : Second of any level of fibo from 0 to 1 (example 0.382)
price1 : Price for 2th any level (example 2497.4)
Returns: array of price for fibo levels : (0.0, 0.118, 0.236, 0.384, 0.5, 0.618, 0.786, 1.0, 1.27,-0.27,1.618,-0.618)
LibIndicadoresUteisLibrary "LibIndicadoresUteis"
Collection of useful indicators. This collection does not do any type of plotting on the graph, as the methods implemented can and should be used to get the return of mathematical formulas, in a way that speeds up the development of new scripts. The current version contains methods for stochastic return, slow stochastic, IFR, leverage calculation for B3 futures market, leverage calculation for B3 stock market, bollinger bands and the range of change.
estocastico(PeriodoEstocastico)
Returns the value of stochastic
Parameters:
PeriodoEstocastico : Period for calculation basis
Returns: Float with the stochastic value of the period
estocasticoLento(PeriodoEstocastico, PeriodoMedia)
Returns the value of slow stochastic
Parameters:
PeriodoEstocastico : Stochastic period for calculation basis
PeriodoMedia : Average period for calculation basis
Returns: Float with the value of the slow stochastic of the period
ifrInvenenado(PeriodoIFR, OrigemIFR)
Returns the value of the RSI/IFR Poisoned of Guima
Parameters:
PeriodoIFR : RSI/IFR period for calculation basis
OrigemIFR : Source of RSI/IFR for calculation basis
Returns: Float with the RSI/IFR value for the period
calculoAlavancagemFuturos(margem, alavancagemMaxima)
Returns the number of contracts to work based on margin
Parameters:
margem : Margin for contract unit
alavancagemMaxima : Maximum number of contracts to work
Returns: Integer with the number of contracts suggested for trading
calculoAlavancagemAcoes(alavancagemMaxima)
Returns the number of batches to work based on the margin
Parameters:
alavancagemMaxima : Maximum number of batches to work
Returns: Integer with the amount of lots suggested for trading
bandasBollinger(periodoBB, origemBB, desvioPadrao)
Returns the value of bollinger bands
Parameters:
periodoBB : Period of bollinger bands for calculation basis
origemBB : Origin of bollinger bands for calculation basis
desvioPadrao : Standard Deviation of bollinger bands for calculation basis
Returns: Two-position array with upper and lower band values respectively
theRoc(periodoROC, origemROC)
Returns the value of Rate Of Change
Parameters:
periodoROC : Period for calculation basis
origemROC : Source of calculation basis
Returns: Float with the value of Rate Of Change
BpaLibrary "Bpa"
TODO: library of Brooks Price Action concepts
isBreakoutBar(atr, high, low, close, open, tail, size)
TODO: check if the bar is a breakout based on the specified conditions
Parameters:
atr : TODO: atr value
high : TODO: high price
low : TODO: low price
close : TODO: close price
open : TODO: open price
tail : TODO: decimal value for a percent that represent the size of the tail of the bar that cant be preceeded to be considered strong close
size : TODO: decimal value for a percent that represents by how much the breakout bar should be bigger than others to be considered one
Returns: TODO: boolean value, true if breakout bar, false otherwise
TradingWolfLibaryLibrary "TradingWolfLibary"
getMA(int, string)
Gets a Moving Average based on type
Parameters:
int : length The MA period
string : maType The type of MA
Returns: A moving average with the given parameters
minStop(float, simple, float, string)
Calculates and returns Minimum stop loss
Parameters:
float : entry price (Close if calculating on the entry candle)
simple : int Calculate how many bars back to look at swings
float : Minimum Stop Loss allowed (Should be x 0.01) if input
string : Direciton of trade either "Long" or "Short"
Returns: Stop Loss Value
intersectLibrary "intersect"
Find Line Intersection X/Y coordinates.
Simple to use, will find intersection if it exists on the segments
if the line segments do not cross on segment, an 'na' value will be returned
if you plot new items with the output coords, they still plot.
avoid this by setting a na(x) condition before plotting new items
get(l1, l2, ( optional _round) )
line intersection coordinates
Parameters:
l1 : (line) first line
l2 : (line) second line
_round : True to make an INT for plotting
if not used, will not round ( overload loophole)
Returns: with x as int if bool is used
na_skip_highestLibrary "na_skip_highest"
Finds the highest historic value over len bars but skip na valued bars (eg, off days). In other words, this will ensure we find the highest value over len bars with a real value, and if there are any na bars in-between, we skip over but the loop will continue. This allows to mimic calculations on markets with off days (eg, weekends).
na_skip_highest(src, len)
Finds the highest historic value over len bars but skip na valued bars (eg, off days). In other words, this will ensure we find the highest value over len bars with a real value, and if there are any na bars in-between, we skip over but the loop will continue. This allows to mimic calculations on markets with off days (eg, weekends).
Parameters:
src : series float source (eg, close)
len : int length, number of recent bars to consider in the window to find the highest value
Returns: highest float highest value found over the len window
KernelFunctionsLibrary "KernelFunctions"
This library provides non-repainting kernel functions for Nadaraya-Watson estimator implementations. This allows for easy substitution/comparison of different kernel functions for one another in indicators. Furthermore, kernels can easily be combined with other kernels to create newer, more customized kernels. Compared to Moving Averages (which are really just simple kernels themselves), these kernel functions are more adaptive and afford the user an unprecedented degree of customization and flexibility.
rationalQuadratic(_src, _lookback, _relativeWeight, _startAtBar)
Rational Quadratic Kernel - An infinite sum of Gaussian Kernels of different length scales.
Parameters:
_src : The source series.
_lookback : The number of bars used for the estimation. This is a sliding value that represents the most recent historical bars.
_relativeWeight : Relative weighting of time frames. Smaller values result in a more stretched-out curve, and larger values will result in a more wiggly curve. As this value approaches zero, the longer time frames will exert more influence on the estimation. As this value approaches infinity, the behavior of the Rational Quadratic Kernel will become identical to the Gaussian kernel.
_startAtBar : Bar index on which to start regression. The first bars of a chart are often highly volatile, and omitting these initial bars often leads to a better overall fit.
Returns: yhat The estimated values according to the Rational Quadratic Kernel.
gaussian(_src, _lookback, _startAtBar)
Gaussian Kernel - A weighted average of the source series. The weights are determined by the Radial Basis Function (RBF).
Parameters:
_src : The source series.
_lookback : The number of bars used for the estimation. This is a sliding value that represents the most recent historical bars.
_startAtBar : Bar index on which to start regression. The first bars of a chart are often highly volatile, and omitting these initial bars often leads to a better overall fit.
Returns: yhat The estimated values according to the Gaussian Kernel.
periodic(_src, _lookback, _period, _startAtBar)
Periodic Kernel - The periodic kernel (derived by David Mackay) allows one to model functions that repeat themselves exactly.
Parameters:
_src : The source series.
_lookback : The number of bars used for the estimation. This is a sliding value that represents the most recent historical bars.
_period : The distance between repititions of the function.
_startAtBar : Bar index on which to start regression. The first bars of a chart are often highly volatile, and omitting these initial bars often leads to a better overall fit.
Returns: yhat The estimated values according to the Periodic Kernel.
locallyPeriodic(_src, _lookback, _period, _startAtBar)
Locally Periodic Kernel - The locally periodic kernel is a periodic function that slowly varies with time. It is the product of the Periodic Kernel and the Gaussian Kernel.
Parameters:
_src : The source series.
_lookback : The number of bars used for the estimation. This is a sliding value that represents the most recent historical bars.
_period : The distance between repititions of the function.
_startAtBar : Bar index on which to start regression. The first bars of a chart are often highly volatile, and omitting these initial bars often leads to a better overall fit.
Returns: yhat The estimated values according to the Locally Periodic Kernel.
ahpuhelperLibrary "ahpuhelper"
Helper Library for Auto Harmonic Patterns UltimateX. It is not meaningful for others. This is supposed to be private library. But, publishing it to make sure that I don't delete accidentally. Some functions may be useful for coders.
insert_open_trades_table_column(showOpenTrades, table_id, column, colors, values, intStatus, harmonicTrailingStartState, lblSizeOpenTrades)
add data to open trades table column
Parameters:
showOpenTrades : flag to show open trades table
table_id : Table Id
column : refers to pattern data
colors : backgroud and text color array
values : cell values
intStatus : status as integer
harmonicTrailingStartState : trailing Start state as per configs
lblSizeOpenTrades : text size
Returns: nextColumn
populate_closed_stats(ClosedStatsPosition, bullishCounts, bearishCounts, bullishRetouchCounts, bearishRetouchCounts, bullishSizeMatrix, bearishSizeMatrix, bullishRR, bearishRR, allPatternLabels, flags, rowMain, rowHeaders)
populate closed stats for harmonic patterns
Parameters:
ClosedStatsPosition : Table position for closed stats
bullishCounts : Matrix containing bullish trade stats
bearishCounts : Matrix containing bearish trade stats
bullishRetouchCounts : Matrix containing bullish trade stats for those which retouched entry
bearishRetouchCounts : Matrix containing bearish trade stats for those which retouched entry
bullishSizeMatrix : Matrix containing data about size of bullish patterns
bearishSizeMatrix : Matrix containing data about size of bearish patterns
bullishRR : Matrix containing Risk Reward data of bullish patterns
bearishRR : Matrix containing Risk Reward data of bearish patterns
allPatternLabels : array containing pattern labels
flags : display flags
rowMain : Pattern header data
rowHeaders : header grouping data
Returns: void
get_rr_details(patternTradeDetails, harmonicTrailingStartState, disableTrail, breakEvenTrail)
calculate and return risk reward based on targets and stops
Parameters:
patternTradeDetails : array containing stop, entry and targets
harmonicTrailingStartState : trailing point
disableTrail : If set, ignores trailing point
breakEvenTrail : If set, trailing does not go beyond breakeven.
Returns: nextColumn
fastlog2Library "fastlog2"
Description:
Returns the approximation of Log2 with the maximal error of: 0.000061011436
Reference:
www.anycodings.com
fastlog2(x)
Returns the approximation of Log2 with the maximal error of: 0.000061011436
Parameters:
x : float
Returns: float, log2 of x
combinLibrary "combin"
Description:
The combin function is a the combination function
as it calculates the number of possible combinations for two given numbers.
This function takes two arguments: the number and the number_chosen.
For example, if the number is 5 and the number chosen is 1,
there are 5 combinations, giving 5 as a result.
Reference:
ideone.com
support.microsoft.com
combin(n, kin)
Returns the number of combinations for a given number of items. Use to determine the total possible number of groups for a given number of items.
Parameters:
n : int, The number of items.
kin : int, The number of items in each combination.
Returns: int.
FibonacciLibrary "Fibonacci"
General Fibonacci functions. Get fib numbers, ratios, etc.
fib_precise(f, precision)
Get the precise Fibonacci ratio, to the specified number of decimal places
Parameters:
f : Fibonacci ratio (string, in form #.###)
precision : Number of decimal places (optional int, dft = 16, max = 32)
Returns: Precise Fibonacci ratio (float)
fib_n(n)
Calculate the Nth number in the Fibonacci sequence
Parameters:
n : Index/number in sequence (int)
Returns: Fibonacci number (int)
TrigLibrary "Trig"
Trigonometric functions
rt_get_angleAlpha(a, b, c, deg)
Get angle α of a right triangle, given the lengths of its sides
Parameters:
a : length of leg a (float)
b : length of leg b (float)
c : length of hypotenuse (float)
deg : flag to return angle in degrees (bool - default = false)
Returns: angle α in radians (or degrees if deg == true)
rt_get_angleAlphaFromLine(x1, y1, x2, y2, l, deg)
Get angle α of a right triangle formed by the given line
Parameters:
x1 : x coordinate 1 (int - optional, required if argument l is not specified)
y1 : y coordinate 1 (float - optional, required if argument l is not specified)
x2 : x coordinate 2 (int - optional, required if argument l is not specified)
y2 : y coordinate 2 (float - optional, required if argument l is not specified)
l : line object (line - optional, required if x1, y1, x2, and y2 agruments are not specified)
deg : flag to return angle in degrees (bool - default = false)
Returns: angle α in radians (or degrees if deg == true)
rt_get_angleBeta(a, b, c, deg)
Get angle β of a right triangle, given the lengths of its sides
Parameters:
a : length of leg a (float)
b : length of leg b (float)
c : length of hypotenuse (float)
deg : flag to return angle in degrees (bool - default = false)
Returns: angle β in radians (or degrees if deg == true)
rt_get_angleBetaFromLine(x1, y1, x2, y2, l, deg)
Get angle β of a right triangle formed by the given line
Parameters:
x1 : x coordinate 1 (int - optional, required if argument l is not specified)
y1 : y coordinate 1 (float - optional, required if argument l is not specified)
x2 : x coordinate 2 (int - optional, required if argument l is not specified)
y2 : y coordinate 2 (float - optional, required if argument l is not specified)
l : line object (line - optional, required if x1, y1, x2, and y2 agruments are not specified)
deg : flag to return angle in degrees (bool - default = false)
Returns: angle β in radians (or degrees if deg == true)
AlgebraLibrary "Algebra"
Algebra functions.
line_fromXy(x1, y1, x2, y2)
Get line slope and y-intercept from coordinates
Parameters:
x1 : x coordinate 1 (int - bar index)
y1 : y coordinate 1 (float - price/value)
x2 : x coordinate 2 (int - bar index)
y2 : y coordinate 2 (float - price/value)
Returns: of line
line_getPrice(x, slope, yInt)
Get line slope and y-intercept from coordinates
Parameters:
x : x coordinate to solve for y (int - bar index)
slope : slope of line (float)
yInt : y-intercept of line (float)
Returns: y (price/value)
L_BetaLibrary "L_Beta"
TODO: add library description here
length()
beta()
simple_beta()
index_selector()
FunctionLAPACKdsyrkLibrary "FunctionLAPACKdsyrk"
subroutine part of LAPACK: Linear Algebra Package,
performs one of the symmetric rank k operations
.
C := alpha*A*A**T + beta*C, or C := alpha*A**T*A + beta*C,
.
where alpha and beta are scalars, C is an n by n symmetric matrix
and A is an n by k matrix in the first case and a k by n matrix
in the second case.
.
reference:
netlib.org
dsyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
performs one of the symmetric rank k operations
.
C := alpha*A*A**T + beta*C, or C := alpha*A**T*A + beta*C,
.
where alpha and beta are scalars, C is an n by n symmetric matrix
and A is an n by k matrix in the first case and a k by n matrix
in the second case.
.
Parameters:
uplo : string specifies whether the upper or lower triangular part of
the array C is to be referenced as follows:
UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced.
UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced.
.
trans : string specifies the operation to be performed as follows:
TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C.
TRANS = 'T' or 't' C := alpha*A**T*A + beta*C.
TRANS = 'C' or 'c' C := alpha*A**T*A + beta*C.
.
n : int specifies the order of the matrix C. N must be at least zero.
k : int On entry with:
TRANS = 'N' or 'n', K specifies the number of columns of the matrix A.
TRANS = 'T' or 't' or 'C' or 'c', K specifies the number of rows of the matrix A.
K must be at least zero.
.
alpha : float scalar.
a : matrix matrix A.
lda : int specifies the first dimension of A.
beta : float scalar.
c : matrix matrix C, is overwritten by the lower triangular part of the updated matrix.
ldc : int specifies the first dimension of C
Returns: void, C is overwritten by the lower triangular part of the updated matrix.
FunctionLAPACKdtrsmLibrary "FunctionLAPACKdtrsm"
subroutine in the LAPACK:linear algebra package, used to solve one of the following matrix equations:
op( A )*X = alpha*B, or X*op( A ) = alpha*B,
where alpha is a scalar, X and B are m by n matrices, A is a unit, or
non-unit, upper or lower triangular matrix and op( A ) is one of
op( A ) = A or op( A ) = A**T.
The matrix X is overwritten on B.
reference:
netlib.org
dtrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
solves one of the matrix equations
op( A )*X = alpha*B, or X*op( A ) = alpha*B,
where alpha is a scalar, X and B are m by n matrices, A is a unit, or
non-unit, upper or lower triangular matrix and op( A ) is one of
op( A ) = A or op( A ) = A**T.
The matrix X is overwritten on B.
Parameters:
side : string , On entry, SIDE specifies whether op( A ) appears on the left or right of X as follows:
SIDE = 'L' or 'l' op( A )*X = alpha*B.
SIDE = 'R' or 'r' X*op( A ) = alpha*B.
uplo : string , specifies whether the matrix A is an upper or lower triangular matrix as follows:
UPLO = 'U' or 'u' A is an upper triangular matrix.
UPLO = 'L' or 'l' A is a lower triangular matrix.
transa : string , specifies the form of op( A ) to be used in the matrix multiplication as follows:
TRANSA = 'N' or 'n' op( A ) = A.
TRANSA = 'T' or 't' op( A ) = A**T.
TRANSA = 'C' or 'c' op( A ) = A**T.
diag : string , specifies whether or not A is unit triangular as follows:
DIAG = 'U' or 'u' A is assumed to be unit triangular.
DIAG = 'N' or 'n' A is not assumed to be unit triangular.
m : int , the number of rows of B. M must be at least zero.
n : int , the number of columns of B. N must be at least zero.
alpha : float , specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry.
a : matrix, Triangular matrix.
lda : int , specifies the first dimension of A.
b : matrix, right-hand side matrix B, and on exit is overwritten by the solution matrix X.
ldb : int , specifies the first dimension of B.
Returns: void, modifies matrix b.
usage:
dtrsm ('L', 'U', 'N', 'N', 5, 3, 1.0, a, 7, b, 6)
BoxLine_LibLibrary "BoxLine_Lib"
personal Library for line and box built in functions
lineXY(x)
get x1,y1,x2,y2 in a tuple
Parameters:
x : TODO: line
Returns: tuple of x1,y1,x2,y2
line(x)
Create line with only the y1 value(when line == na) or all
when line != na set x1,y1,x2,y2 individually just 1 or all
- use just the line value to set the x2 to current bar or time will set to time
- will auto pick xloc.bar_index or xloc.bar_time if not used
Parameters:
x : (line line,int x1,float y1,int x2,float y2,
string xloc,string extend,color color,string style,int width)
Returns: Line
boxXY(x)
get left,top,right,bottom in a tuple
Parameters:
x : box
Returns: tuple of left,top,right,bottom
box(x)
Create line with only the top,bottom value(when line == na) or all
when box != na set left,top,right,bottom individually just 1 or all
- use just the box value to set the right to current bar or time will set to time
- if right is above a number that a bar_index wouldnt be
Parameters:
x : box box,int left,float top,int right,
float bottom,color border_color, int border_width,
string border_style,string extend,string xloc,
color bgcolor,string text,string text_size, color text_color,
string text_halign,string text_valign,string text_wrap)
Returns: TODO: Box